10 важнейших технологий 2016 года

Илья Хель

2016 год был давно, но это не означает, что мы не можем назвать самые быстро развивающиеся, а вместе с тем и важнейшие для нашего будущего технологии того времени. Журнал Scientific American собрал десятку громких названий, о которых мы писали, пишем и будем писать еще неоднократно. Возможно, именно они изменят этот мир. Возможно, именно они сделают будущее таким, каким оно должно быть.

Шестеренки

Самое важное на 2016 год в мире технологий

Автономный транспорт набирает обороты

Автомобили

Самоуправляемые автомобили уже реальность

У самоуправляемых систем имеются ошибки, но зато они не отвлекаются и не принимают рискованные решения, которые становятся причиной большинства аварий на дорогах сегодня. Расцвет автомобилей преобразовал наше общество. Он изменил всё: где мы живем, что мы покупаем, как работаем, с кем дружим. По мере того как автомобили и грузовики становятся все более распространенными, они создают новые рабочие места и делают другие профессии устаревшими.

Сегодня мы стоим на пороге очередного преобразующего технологического сдвига в области транспорта: от автомобилей, управляемых людьми, до самоуправляемых автомобилей. Долгосрочное влияние автономного транспорта на общество сложно предсказать, но также сложно переоценить. Одно можно сказать точно: когда эта технология станет повсеместной, наша жизнь изменится.

Google и другие компании испытывают самоуправляемые автомобили уже несколько лет, и небезуспешно. Такие автомобили обрабатывают огромные объемы сенсорных данных с бортовых радаров, камер, ультразвуковых дальномеров, GPS и карт, прокладывая путь во все более сложных и стремительно меняющихся условий дорожного движения. Безо всякого участия человека.

Потребительское использование транспортных средств с автономными возможностями только начинается. Принятие будет происходить постепенно, путем неуклонного внедрения все более умных функций безопасности и удобства в обычные автомобили. Некоторые модели, например, уже предлагают самостоятельную параллельную парковку, автоматическое поддержание полосы движения, экстренное торможение или даже полуавтономный круиз-контроль. В октябре прошлого года Tesla Motors выпустила программное обеспечение, которое активирует ограниченную форму автопилота для владельцев автомобилей после загрузки.

Эта тенденция наверняка продолжится, пока технология будет становиться все лучше, а правовые и нормативные барьеры — падать. В США полдюжины штатов уже разрешили автономные дорожные средства и другие процессы в этом ключе текут своим чередом. В основном дискуссии посвящены тому, на чьи плечи будут ложиться правовые и финансовые проблемы, если такие автомобили попадут в ДТП (а ведь попадут) — хотя ожидается, что они будут намного безопаснее современных автомобилей.

Пространства для улучшений еще много. Самоуправляемые системы не безошибочны — программное обеспечение очень сложное — но лишены человеческого фактора, а это важно. Они не устают и не отвлекаются.

Куда более глубокие изменения последуют, когда автомобили и грузовики будут абсолютно самостоятельны — даже если внутри никого не будет. Эксклюзивное обладание автомобилем, необходимое в современном мире, может исчезнуть. Кар-шеринг и беспилотные такси и службы доставки станут нормой. Общие программируемые автомобили снизят необходимость в парковках, уменьшат пробки и обеспечат безопасное передвижение при более высоких скоростях и на более тесной дистанции, наряду со всем прочим.

Как и любая технология, автономные транспортные средства будут со своими недостатками. В определенный момент работа водителя может стать ненужной. Общий транспорт поднимает вопросы безопасности и конфиденциальности. В некоторых регионах повышение доступности автомобиля может существенно усугубить проблемы трафика и загрязнения окружающей среды, а не смягчить. Но преимущества самоуправляемого транспорта настолько убедительны, но их широкое применение является вопросом времени, а не здравого смысла.

Интернет вещей уходит в нано

Интернет вещей

Термин «Интернет вещей» достаточно молодой, но за ним будушее

Интернет вещей (IoT), построенный из недорогих микросенсоров и микропроцессоров вкупе с крошечными элементами питания и беспроводными антеннами, быстро расширяется и выходит из онлайновой вселенной с компьютерами и мобильными гаджетами в мир обычных вещей физического мира: термостатов, автомобилей, дверных замков, даже поводков для домашних животных. Новые устройства для Интернета вещей появляются ежедневно, и аналитики полагают, что до 30 миллиардов таковых будут в Сети уже к 2020 году.

Взрывное подключение объектов, в особенности тех, что отслеживают и контролируют системы искусственного интеллекта, может наделить обычные вещи удивительными возможностями: дом, отпирающий входную дверь, когда узнает своего владельца, приехавшего домой с работы; или же имплантированный датчик сердца, вызывающий доктора, когда орган показывает признаки неисправности. Но настоящий Большой Взрыв в мире онлайна может быть еще впереди.

Ученые уже начали сжимать сенсоры миллиметровых или микронных размеров до нанометровых: достаточно малых, чтобы они могли блуждать по телу живого человека и напрямую замешиваться в строительные материалы. Это важный первый шаг в направлении «Интернета нановещей» (IoNT), который может вывести медицину, энергоэффективность и многие другие отрасли на совершенно новый уровень.

Некоторые из самых продвинутых на сегодня нанодатчиков изготавливаются с применением методов синтетической биологии для модификации одноклеточных организмов, типа бактерий. Задача: создать простые биокомпьютеры, которые используют ДНК и белки для распознавания определенных химических целей, накапливают несколько битов информации и затем сообщают их статус, изменяя цвет или излучая легко обнаружимый сигнал. Synlogic, стартап из Кембриджа, штат Массачусетс, работает над коммерциализацией подключенных к компьютеру штаммов пробиотических бактерий для лечения редких метаболических заболеваний. Помимо медицины, такие клеточные наносенсоры могли бы найти применение в аграрной сфере и производстве лекарств.

Много наносенсоров также сделали из небиологических материалов вроде углеродных нанотрубок, которые могут одновременно и принимать данные и посылать сигнал, подобно беспроводным наноантеннам. Поскольку они настолько малы, наносенсоры могут собирать информацию из миллионов различных точек. Внешние устройства затем могут интегрировать эти данные для генерации невероятно подробных март, показывающих мельчайшие изменения в свете, вибрации, электрических токах, магнитных полях, химических концентрациях и другие условиях окружающей среды.

Переход от умных нанодатчиков к Интернету нановещей кажется неизбежным, но на пути этого перехода нас ждут серьезные трудности. К примеру, трудно интегрировать все необходимые компоненты в автономное наноустройство, которое будет регистрировать изменение и передавать сигнал в Сеть. Также трудно решить все вопросы частности и безопасности. Любые наноустройства, включенные в тело, умышленно или по неосторожности могут быть токсичными или вызывать иммунный ответ. Такая технология может быть использована для незаконной слежки.

Интернет нановещей обещает обеспечить нам более подробную, недорогую и актуальную картину работы наших домов, городов, заводов — даже тел. Сегодня к Интернету подключены светофоры, носимые устройства и камеры наблюдения. Завтра к Интернету будут подключены миллиарды нанодатчиков, добывающих огромные объемы информации в реальном времени и передающих эту информацию в облако.

Батареи нового поколения с повышенной емкостью

Батарейки

Батареи давно требуют большого шага вперед

Качество солнечной и ветряной энергии растет не по дням, а по часам — во всех отношениях. Но солнце заходит, а ветер может быть капризным. С каждым годом ветряные фермы становятся больше, а солнечные элементы более эффективны, благодаря прорывам в области материалов, к примеру, перовскитов. И несмотря на это, эти возобновляемые источники энергии едва ли удовлетворяют 5% мирового спроса на электричество. Во многих местах возобновляемые источники энергии занимают нишевые рынки из-за отсутствия доступных и надежных технологий хранения избыточной энергии, которую они вырабатывают в идеальных условиях, чтобы ее можно было извлечь по необходимости, когда условия будут хуже. Батареи получше могли бы решить эту проблему и позволить альтернативной энергетике развиваться еще быстрее. В конце концов, в нашем мире около 1,2 миллиарда человек живут, не имея доступа к надежным источникам электричества.

За несколько последних лет были продемонстрированы новые типы батарей, которые обеспечивают достаточно высокую емкость, чтобы обслуживать целые заводы, города или даже «мини-сети», связывающие изолированные сельские сообщества. В основе этих батарей лежит натрий, алюминий или цинк. В них нет тяжелых металлов и едких химикатов, используемых в старых свинцово-кислотных аккумуляторах, и они более доступны, масштабируемы и безопасны, чем литиевые батареи, что в настоящее время используются в продвинутой электронике и электромобилях. Новейшие технологии прекрасно подходят для систем, полагающихся на энергию солнца и ветра.

В прошлом октябре, например, Fluidic Energy объявила о соглашении с правительством Индонезии, в рамках которого оснастит 500 удаленных деревень солнечными панелями на 35 мегаватт, обеспечив электричеством дома 1,7 миллиона человек. Система будет использовать цинково-воздушные аккумуляторы Fluidic для хранения 250 мегаватт-часов энергии, обеспечивающих доступное электричество вне зависимости от погоды. В апреле эта же компания заключила подобную сделку с правительством Мадагаскара, согласно которой обеспечит мини-сетью 100 удаленных деревень.

Для людей, в настоящее время не имеющих доступа к электросети — а вместе с тем и к свету для работы в ночное время, к Интернету для поиска информации и к энергии для орошения или полива урожая — сочетание возобновляемой энергии и масштабируемой сети батарей станет настоящим прорывом, возможным лекарством от бедности. В хороших батареях нуждается и мир богатых, только уже по другой причине: чтобы снизить углеродные выбросы от избыточной выработки электричества за следующие двадцать лет — и это на фоне растущего спроса на электричество.

Идеальных аккумуляторов пока не придумали. Новые технологии появляются и нуждаются в усовершенствовании. Совсем недавно отрасль батарей стояла как вода в тихом пруду. Отрадно видеть, что прогресс оживился.

Открытая экосистема ИИ обещает персонального помощника каждому

ИИ

Персональный помощник каждого человека — реальность ближайшего будущего

Одно из преимуществ, которым могут похвастать директора и знаменитости, чего нет у большинства людей, заключается в том, что им не нужно тратить много времени на обработку неинтересных, отнимающих много времени аспектов повседневной жизни: планирование встреч, составление плана поездок, поиск необходимой информации. У них есть личные помощники, персональные ассистенты, которые занимаются этими вещами. Но скоро — возможно, даже в этом году — большинство из нас сможет позволить себе эту роскошь всего за пару чашек кофе в месяц, благодаря появлению открытой экосистемы ИИ.

ИИ — это, конечно же, искусственный интеллект. Siri от Apple, Cortana от Microsoft, OK Google от Google и Echo от Amazon устроены таким образом, что извлекают вопросы из речи, используя обработку естественного языка, а затем делают ограниченный набор полезных вещей, к примеру, найти ресторан, получить направление движения, найти окошко для встречи или выполнить простой поиск в Интернете. Но слишком часто их ответ на просьбу о помощи звучит так: «К сожалению, ничего не знаю об этом» или «Вот что я нашла в Интернете на эту тему». Человек никогда так не опростоволосится. Кроме того, эти системы закрытые, и дополнить их новыми функциями просто невозможно.

Но за последние несколько лет новейшие технологии связались вместе и выяснилось, что мы можем построить мощнейшую систему цифровых помощников — открытую экосистему ИИ. Эта экосистема будет не только связана с нашими мобильными устройствами и компьютерами — а через них с нашими сообщениями, контактами, финансами, календарями и рабочими документами — но и с термостатами в спальной, с бойлером в ванной, с браслетом на руке и даже с автомобилем в гараже. Взаимосвязь Интернета с Интернетом вещей и вашими личными данными будет поддерживаться голосовым общением с ИИ, что выведет продуктивность работы на новый уровень, а миллионы людей сделает более здоровыми и счастливыми уже за несколько следующих лет.

Накапливая анонимные данные о здоровье и предоставляя персонализированные советы на тему здоровья отдельным лицам, такие системы должны привести к существенным улучшениям в области здравоохранения и снижению расходов на него. Применение систем ИИ к финансовым сервисам снизит процент непреднамеренных ошибок, равно как и намеренных (мошеннических).

Секретным ингредиентом этой технологии, которого не хватало до нынешних пор, является контекст. До сих пор машины были по большей части безразличными к нашей работе, нашим телам и нашим жизням. Помощник в лице человека знает, когда вы раздражены, устали, соскучились, проголодались или хотите спать. Помощник в лице человека знает, что для вас важно и чего вы хотели бы избежать. Системы ИИ учатся работать с контекстом, так что скоро и они будут уметь все вышеперечисленное не хуже человека. И хоть им пока не сравниться с человеком по степени эмпатии, в некотором смысле они уже его превосходят — и будут в тысячу раз дешевле.

Различные компании уже продемонстрировали системы ИИ, обладающие этими навыками. Microsoft Research построила систему ИИ, которая знает, что вы слишком заняты, чтобы принять вызов (и знает, какие звонки все равно придется принять), и автоматически назначает встречи на то время, которое вы сами предпочли бы. Другие компании вроде Angel.ai представили сервисы, которые выполняют поиск рейсов, отвечающих вашим предпочтениям и ограничениям, на основании простых запросов обычным разговорным языком.

Так же, как конфиденциальность и лояльность ценится среди людей, цифровые версии будут иметь успех только тогда, когда мы сможем доверить им свою безопасность и неприкосновенность частной жизни; они должны будут действовать в наилучших интересах пользователя, как только узнают, что это такое. Это интересный вызов сообществу ИИ.

Оптогенетика прокладывает дорогу к лечебной неврологии

Оптогенетика

Мы до сих пор слабо себе представляем, как работает мозг у мыши, чего уж говорить о людях

Мозги, даже относительно простые, как у мышей, обескураживают нас своей сложностью. Нейрофизиологи и психологи могут наблюдать за тем, как мозг реагирует на различные виды стимулов, и даже составлять карту экспрессии генов по всему мозгу. Но не имея возможности контролировать процесс включения и выключения отдельных нейронов и других видов клеток мозга, ученые не могут объяснить, что делают эти клетки, по крайней мере не подробно. А без подробного понимания невозможно и лечение серьезных расстройств вроде болезни Паркинсона.

Ученые пытались использовать электроды для записи нейронной активности, и в некоторой степени это сработало. Но этот метод грубый и неточный, потому что электроды стимулируют каждый нейрон поблизости и не могут различать виды клеток головного мозга.

В 2005 году произошел прорыв, когда нейрогенетики продемонстрировали способ применения генной инженерии, чтобы заставить нейроны реагировать на конкретные цвета света. Эта техника, известная как оптогенетика, была основана на исследовании пигментных белков, известных как родопсины, 1970-х годов. Эти белки работают как ионные насосы, активируемые светом. Микробам, у которых нет глаз, родопсины помогают извлекать энергию и информацию из входящего света.

Добавив мышам один или больше генов опсина в конкретные нейроны, биологи смогли использовать видимый свет для включения и выключения отдельных нейронов по необходимости. За годы работы ученые разработали разные версии этих белков, отвечающих на разные цвета, от темно-красного до желтого и голубого. Помещая различные гены в различных клетках, они используют импульсы света разных цветов для активации одного нейрона и затем нескольких нейронов по соседству в точно установленной временной последовательности.

Это важное дополнение, поскольку в живых мозгах время решает всё. Сигнал, отправленный в один момент, может иметь совершенно противоположный эффект, если будет отправлен несколькими миллисекундами позже.

Изобретение оптогенетики значительно ускорило темпы прогресса в науках о мозге. Но эксперименты были ограничены сложностью доставки света глубоко в ткани мозга. Теперь же сверхтонкие гибкие микрочипы, беспроводные и размером едва ли больше нейрона, помещаются внутрь тканей мозга, чтобы взять нервы под контроль. Их можно поместить глубоко в мозг с минимальными повреждениями вышележащих тканей.

Оптогенетики уже отворили двери новым исследованиям расстройств мозга, включая тремор в заболевании Паркинсона, хроническую боль, повреждение зрения и депрессию. Нейрохимия мозга крайне важна для определенных состояний мозга, поэтому лекарства могут облегчать симптомы — но до определенного момента. Исследования в области оптогенетики также могут помочь там, где нарушен круговорот электричества в мозге, благодаря беспроводным микрочипам. Последние исследования показали, что в некоторых случаях неинвазивная светотерапия может отключать определенные нейроны, вызывающие хронические боли, чем обеспечивает хорошую альтернативу лечению опиоидами.

Органы-на-чипе открывают новые виды на биологию человека

Орган на чипе

Выращивание функциональных человеческих органов на чипе

Вопреки голливудским стереотипам, вы не найдете живых человеческих органов, плавающих в лабораториях биологов. Если даже отринуть все технические трудности поддержания органа вне тела, целые органы слишком ценны как трансплантаты, чтобы пускать их на эксперименты. И все же много важных биологических исследований и практических испытаний лекарств можно провести только изучая орган в процессе его работы. Новая технология может решить этот вопрос практически: за счет выращивания функциональных человеческих органов в миниатюре, на микрочипах.

В 2010 году Дональд Ингбер из Института Висса разработал легкие-на-чипе, первые в своем роде. Коммерческий сегмент быстро подключился к разработкам, включая компанию Emulate во главе с Ингбером и другими из Института Висса, а также DARPA. С тех пор разные группы ученых сообщали об успешной реализации миниатюрных моделей легких, печени, почек, сердца, костного мозга и роговицы. Далее будут и другие.

Каждый орган-на-чипе по размерам примерно с флешку USB. Он изготовлен из гибкого полупрозрачного полимера. Микрожидкие трубки, каждая меньше миллиметра в диаметре, подведены к клеткам, взятым из интересующего ученых органа, и работают в сложном тандеме с чипом. Когда питательные вещества, кровь и тестовые компоненты вроде экспериментальных препаратов закачиваются по трубкам, клетки повторяют ключевые функции живого органа.

Камеры внутри чипа могут быть организованы так, чтобы имитировать определенную структуру ткани органа вроде крошечных воздушных мешков в легком. Воздух проходит через канал и весьма точно имитирует человеческое дыхание. В то же время кровь, наполненную бактериями, можно накачивать по другим трубкам и наблюдать, как клетки реагируют на инфекцию, без какого-либо риска для человека. Эта технология позволяет ученым наблюдать биологические механизмы и физиологическое поведение, как никогда прежде.

Микрочипы с органами обеспечивают прорыв для компаний, которые разрабатывают новые лекарства. Их способность эмулировать человеческие органы позволяют точно и реалистично испытывать возможные лекарства. В прошлом году, например, одна группа использовала чип для имитации способа, которым эндокринные клетки выделяют гормоны в кровоток, и провела важные исследования лекарства от диабета.

Другие группы изучают возможность использования органов-на-чипе в персонализированной медицине. В принципе, эти микрочипы можно создавать из стволовых клеток, извлеченных у самих пациентов, а затем проводить испытания, которые позволят определить индивидуальные методы лечения, у которых будет больше шансов на успех.

Остается надежда, что миниатюрные органы могли бы значительно уменьшить зависимость фармацевтической промышленности от испытаний на животных. Миллионы животных умерщвляют каждый год в ходе таких тестов, отчего рождаются горячие споры. Но если даже не говорить об этической стороне вопроса, испытания на животных просто неэффективны, поскольку люди могут иначе реагировать на те же лекарства. Испытания на миниатюрных органах людей могут быть куда удачнее.

Военные также полагают, что у органов-на-чипе также есть потенциал спасать жизни, но немного другой. Искусственное легкое, а также другие подобные органы, может быть следующим крупным шагом в исследовании того, как биологическое, химическое или радиологическое оружие влияет на людей. Сейчас, по очевидным этическим причинам, такие испытания невозможны.

Солнечные элементы из перовскитов переживают подъем

Перовскит

Перовскитовый элемент

Кремниевые солнечные элементы, которые в настоящее время преобладают на мировом рынке, страдают от трех фундаментальных ограничений. Новый перспективный способ производства высокоэффективных солнечных элементов с использованием перовскитов вместо кремния может решить все три одновременно и существенно повысить выработку электричества из солнечного света.

Первое серьезное ограничение кремниевых фотоэлектрических ячеек заключается в том, что они изготовлены из материала, который редко встречается в природе в чистой элементарной форме, которая необходима. Хотя нехватки кремния в форме диоксида кремния (песок на пляже) нет, необходимо приложить огромное количество энергии, чтобы избавить его от кислорода. Обычно производители нагревают диоксид кремния до 1500–2000 градусов по Цельсию в дуговой сталеплавильной печи. Энергия, необходимая для работы таких печей, устанавливает фундаментальный нижний предел себестоимости производства кремниевых фотоэлектрических ячеек и также добавляет выбросов парниковых газов в процессе производства.

Перовскиты — широкомасштабный класс материалов, в которых органические молекулы, состоящие в основном из углерода и водорода, связываются с металлом вроде свинца и галогеном вроде хлора в трехмерную кристаллическую решетку. Их производство может быть намного дешевле, а связанных с ним выбросов — намного меньше. Производители могут наносить перовскиты тонкой пленкой на поверхность практически любой формы без необходимости использовать печь. Пленка также весит очень мало.

Что, в свою очередь, устраняет второе большое ограничение кремниевых солнечных ячеек: их жесткость и вес. Кремниевые фотоэлектрические элементы прекрасно подходят для использования на плоских больших панелях. Но делать крупномасштабные инсталляции таких панелей весьма дорого, поэтому вы обычно видите их на крышах домов и на «солнечных фермах».

Третье серьезное ограничение традиционных солнечных элементов заключается в их эффективности преобразования энергии, которая уже 15 лет стоит на отметке в 25%. Изначально перовскиты обещали куда более низкую эффективность. В 2009 году элементы из перовскитов на основе свинца, иодида и метиламмония превращали менее 4% полученного солнечного света в электричество. Но темп развития перовскитов оказался феноменальным, отчасти благодаря тому факту, что этот класс материалов позволяет работать с тысячами различных химических составов. К 2016 году эффективность солнечных элементов на основе перовскитов подобралась к 20% — пятикратное улучшение всего за семь лет с удвоением эффективности за последние два года. Теперь они могут конкурировать коммерчески с кремниевыеми фотоэлектрическими элементами, а пределы эффективности перовскитов все еще могут быть намного выше. Быстро развивающиеся фотоэлектрические элементы на основе перовскитов очень скоро могут обойти уже зрелую технологию кремниевых ФЭ.

Ученым еще предстоит ответить на несколько важных вопросов о перовскитах, например, как они будут противостоять многолетним атмосферным воздействиям и как можно наладить их производство в таком количестве, чтобы конкурировать с кремниевыми панелями на мировом рынке. Но даже относительно небольшой приток этих новых элементов может помочь обеспечить солнечной энергией удаленные районы, еще не подключенные к электросети. В сочетании с развивающимися технологиями батарей, перовскитные солнечные ячейки могут помочь трансформировать жизни 1,2 миллиарда человек, которым в настоящее время не хватает надежного электричества.

Метаболическая инженерия превращает микробов в фабрики

Чашка Петри

Из микробов можно делать разные материалы

Проследите путь продуктов, которые мы покупаем и используем каждый день — от пластмассы и тканей до косметики и топлива — до их появления и обнаружите, что подавляющее их большинство было сделано из материалов, созданных в глубоком подполье. Заводы, которые производят все необходимое для современной жизни по большому счету производят это из самых разных химических веществ. Эти химические вещества производятся на заводах в основном из ископаемого топлива — в основном, продуктов нефти — которое разбивается на множество других соединений.

Для климата и, возможно, для мировой экономики было бы гораздо лучше производить многие химические вещества для промышленности из живых организмов, а не из нефти, газа и угля. Мы уже используем сельскохозяйственную продукцию таким образом — мы носим хлопчатобумажную одежду и живем в деревянных домах — но растения не являются единственным источником ингредиентов. Микробы могут предложить гораздо больше в долгосрочной перспективе и делать недорогие материалы с широким набором свойств, которые мы принимаем как должное. Вместо того чтобы выкапывать сырье из земли, мы можем «варить» его в гигантских биореакторах, наполненных живыми микроорганизмами.

Чтобы химическое производство на биологической основе начало работать, оно должно начать конкурировать с обычным химическим производством как в цене, так и в производительности. Благодаря новейшим достижениям в области систем метаболической инженерии, которая меняет биохимию микробов, чтобы они тратили свою энергию и ресурсы на синтез полезных химических продуктов, эта цель оказалась в пределах досягаемости. Иногда эти настройки включают изменение генетического состава организмов; иногда включают более сложную инженерию микробного метаболизма и настройки свойств системы.

С новейшими достижениями в сфере синтетической биологии, биологии систем и эволюционной инженерии, метаболическая инженерия теперь способна создавать биологические системы, способные производить химические вещества, которые трудно (и дорого) производить традиционными способами. В рамках одной из последних успешных демонстраций, микробы были настроены на производство [поли(лактата-со-гликолата)], имплантируемого, биоразлагаемого полимера, который используется в качестве хирургического шовного материала, для имплантатов и протезов, а также для доставки лекарственных средств против рака и инфекций.

Системы метаболической инженерии также использовались для создания штаммов дрожжей, которые производят опиоиды для лечения боли. Эти лекарства нужны по всему миру, особенно в развивающихся странах, в которых с болью борются недостаточно эффективно.

Ассортимент химических веществ, которые можно производить с использованием метаболической инженерии, расширяется с каждым годом. Хотя этот метод вряд ли сможет воспроизвести все продукты, извлекаемые из нефтепродуктов, он зато сможет открыть нам новые химические вещества, которые никогда не были бы произведены из ископаемого топлива — в частности, сложные органические соединения, которые в настоящее время слишком дороги, поскольку их нужно извлекать из растений или животных, да и то в крошечных количествах.

В отличие от ископаемого топлива, химические вещества из микробов практически ничем не ограничены и испускают относительно мало парниковых газов; некоторые из них теоретически могут обратить вспять поток углерода с Земли в атмосферу, поглощая диоксид углерода или метан и включая его в продукты, которые в конечном итоге будут захоронены как твердые отходы.

По мере наращивания биохимического производства для промышленного использования, придется также внимательно следить за тем, чтобы случайно не выбросить инженерных микроорганизмов в окружающую среду. Хотя эти тонко настроенные микробы окажутся в невыгодном положении в дикой природе, лучше держать их безопасно в своих баках, счастливо работая над производством полезных вещей на благо человечества и окружающей среды.

Блокчейн усиливает конфиденциальность, безопасность и неприкосновенность данных

Блокчейн

За блокчейном будущее

Блокчейн, или же цепочка блоков транзакций, — это термин, известный по цифровой валюте биткойн: децентрализованная общественная сеть транзакций, которой не владеет и не управляет ни один человек, ни одна организация. Любой пользователь может получить доступ ко всему блокчейну, и каждый перевод средств с одного аккаунта на другой записывается и верифицируется с использованием математических методов, заимствованных из криптографии. Поскольку копии блокчейна разбросаны по всей планете, он считается эффективным методом защиты от взлома.

Проблемы, которые представляют биткоины для правоохранительных органов и международного валютного контроля, обсуждаются постоянно. Но блокчейн находит применение и за пределами простых денежных операций.

Как и сеть Интернет, блокчейн представляет собой открытую глобальную инфраструктуру, на которой могут быть построены другие технологии и приложения. И, как и Интернет, он позволяет людям обходить традиционных посредников, работая друг с другом, тем самым снижая или вовсе убирая операционные издержки.

Используя блокчейн, отдельные лица могут обменивать деньги или покупать страховку безопасно или без банковского счета, даже через национальную границу — это может стать прорывом для двух миллиардов человек в мире, в котором правят финансовые институты. Технология блокчейна позволяет незнакомцам заключать быстрые и надежные контракты без юристов и посредников. Можно продать недвижимость, билеты, акции или другой вид собственности или прав без брокера.

Долгосрочные последствия использования блокчейна для профессиональных посредников, вроде банков, адвокатов и брокеров, могут быть весьма серьезными и не обязательно в худшую сторону, ведь сами эти посредники платят огромные суммы в виде операционных издержек на ведение бизнеса. Аналитики Santander InnoVentures, например, подсчитали, что к 2022 году технология блокчейна могла бы сэкономить банкам более 20 миллиардов долларов в год.

Около 50 крупных банков заявили об инициативе изучения и использования блокчейна. Инвесторы вложили более миллиарда долларов в прошлом году в стартапы, которые будут эксплуатировать блокчейн для широкого круга предприятий. Техногиганты вроде Microsoft, IBM и Google уже ведут проекты блокчейнов.

Поскольку блокчейновые транзакции регистрируются с использованием частных и публичных ключей — длинных строк символов, нечитабельных для людей — люди могут сохранять анонимность, позволяя третьим лицам верифицировать их цифровое рукопожатие. И не только люди: организации могут использовать блокчейны для хранения публичных записей и гарантий.

Пожалуй, самым обнадеживающим преимуществом технологии блокчейна является стимул, который он создает для участников: работать честно и по правилам, которые одинаковы для всех. Биткоины привели к известным злоупотреблениям в торговле контрабандой, и определенное злоумышленное использование технологии блокчейна будет неизбежно. Эта технология не делает кражу невозможной, только усложняет ее. Но, как и любая технология, блокчейн совершенствуется и улучшается, и в этом его перспективы весьма радужны.

Двумерные материалы создают новые инструменты для технологов

Графен

Новый вид материала состоит из одного слоя атомов

Новые материалы могут изменить мир. Мы не просто так говорим о бронзовом веке и о железном веке. Бетон, нержавеющая сталь и кремний привели нас в современную эпоху. Теперь же новый класс материалов, состоящих из одного слоя атомов, отмечают далеко идущие возможности. Этот класс двумерных материалов за последние несколько лет вырос и включает решетчатые слои углерода (графен), бора (борофен), гексагонального нитрида бора (белый графен), германий (германен), кремния (силицен), фосфора (фосфорофен) и олова (станен). Много других двумерных материалов были показаны в теории, но еще не синтезированы, вроде графана из углерода. У каждого из них удивительные свойства, и различные двумерные субстанции можно совмещать как кубики LEGO, создавая новые материалы.

Революция монослоев началась в 2004 году, когда двое ученых создали двумерный графен с помощью обычного скотча — пожалуй, это первый раз, когда нобелевское открытие было сделано с использованием инструмента, который можно найти даже в детском саду. Графен прочнее стали, тверже алмаза, легче всего остального, прозрачный, гибкий и прекрасно проводит электричество. Он также непроницаем для большинства веществ, за исключением водяного пара, который свободно протекает через молекулярную сетку.

Изначально графен стоил дороже золота, но благодаря улучшению технологий производства упал в цене. Гексагональный нитрид бора также коммерчески доступен и следует подобной траектории. Графен стал достаточно дешевым, чтобы его можно было включать в водные фильтры, предназначенные для опреснения и очистки сточных вод. По мере снижения стоимости, графен можно будет добавлять в бетон и асфальт для очистки городского воздуха, поскольку помимо своей прочности, этот материал поглощает моноксид углерода и оксиды азота из атмосферы.

Другие двумерные материалы, вероятно, будут следовать траектории графена и найдут применение в различных сферах по мере снижения стоимости производства, особенно в электронике. Технологи до сих пор открывают для себя новые уникальные свойства двумерных материалов. Графен, например, используется для производства гибких датчиков, которые можно зашить в одежде — или напрямую распечатать в 3D-ткани, используя другую технику производства. При добавлении к полимерам, графен может сделать крылья самолета легче и прочнее.

Гексагональный нитрид бора совместили с графеном и нитридом бора для улучшения литий-ионных батарей и суперконденсаторов. Умещая больше энергии в меньших объемах, эти материалы могут снизить время зарядки, продлить жизнь батареи и снизить вес — это будет полезно везде, от смартфонов до электромобилей.

Всякий раз, когда новые материалы попадают в окружающую среду, возникают опасения на тему их токсичности. Десять лет токсикологических исследований графена не выявили ничего, что могло бы подогреть озабоченность на тему его влияния на здоровье и окружающую среду. Но исследования продолжаются.

Изобретение двумерных материалов создало новый ящик с мощными инструментами для технологов. Ученые и инженеры смешивают и сопоставляют эти сверхтонкие соединения — каждое с уникальными оптическими, механическими и электрическими свойствами — для производства материалов, оптимизированных для самых разных применений. Сталь и кремний, основы индустриализации 20 века, выглядят неуклюжими и сырыми по сравнению со своими наследниками.