Теория струн призвана объединить все наши знания о Вселеной и объяснить ее. Когда она появилась, то буквально очаровывала своей кажущейся простотой и лаконичностью, объединяя то, что раньше казалось невозможным. Однако с течением времени стало понятно, что эта красивая теория только кажется простой и, к великому сожалению многих исследователей, порождает куда больше вопросов, чем ответов. Эта теория описывает одномерные, вибрирующие волокнистые объекты, называемые «струнами», которые распространяются в пространстве-времени и взаимодействуют друг с другом. Несмотря на то, что сегодня популярностью среди физиков пользуются другие теории, ученые постепенно, кусочек за кусочком, продолжают открывать и расшифровывать фундаментальные струны физической Вселенной с помощью математических моделей. Так, согласно результатам нового исследования, математики из университета штата Юта обнаружили новое доказательства теории струн.
Несмотря на научный прогресс и последние достижения человечества, наши знания о Вселенной крайне малы. Причина, отчасти, заключается в том, что мы с трудом можем представить себе такие концепции (или понятия), как, например, бесконечность или Большой взрыв, а также то, что было до него. В поисках ответов на важнейшие вопросы ученые рассматривают даже самые противоречивые и спорные теории. Одной из таких является теория Мультивселенной. Некоторые основоположники теории инфляции, в том числе физик из Стэнфордского университета Андрей Линде, выдвинули идею о том, что квантовые флуктуации во время инфляции породили не только галактики, но и целые вселенные. Из этой статьи вы узнаете, почему теории Мультивселенной стоит уделить внимание.
Ну что ж, любители научной фантастики – пришло время разочарований. Помните рассказ Рэя Брэдбери «И грянул гром»? В нем охотник-любитель по имени Экельс отправляется на дорогостоящую охоту в мезозойскую эру, но на обратном пути случайно сходит с тропы и наступает на бабочку. Вернувшись в свое время, герой понимает, что смерть бабочки повлекла за собой череду никому не подконтрольных изменений. Рассказ Брэбери описывает так называемый «эффект бабочки» – теорию, согласно которой даже самые малейшие изменения способны вызвать хаос в будущем. Считается, что взмах крыльев бабочки в Великобритании может послужить причиной торнадо в США. Безусловно, эффект бабочки» отлично «смотрится» в теориях о путешествиях во времени, однако результаты исследования, опубликованного в журнале Physical Review Letters, показали, что никаких доказательств эффекта бабочки в квантовой механике не существует.
Квантовые технологии для большинства наших современников все еще остаются чем-то фантастическим и запредельным. Вместе с тем, именно развитие квантовых устройств привело человечество к тому, что практически в каждом доме в настоящее время можно найти смартфоны, плоские телевизоры и другую электронику. Как сообщает портал newatlas.com, исследователи MIT придумали новое творческое решение применения технологии будущего в медицине, создав концепт “пластыря”, позволяющего обеспечить максимально эффективную работу вакцин, а также отслеживающего то, кто и когда делал какие-либо прививки. Может ли данная технология стать по-настоящему полезной?
Альтернативные и псевдонаучные факты часто распространяются в обществе с молниеносной скоростью. Теперь, похоже, они смогли заразить и науку — по крайней мере, ее квантовую сферу. Несмотря на то, что наука всегда отождествляла себя со знанием, основанном на наблюдении, измерении и анализе, странные правила квантовой механики показывают, что и наука, и ее альтернативная версия имеют право на наличие своих собственных аргументов, делающих их правыми в любом случае.
Физики из шотландского университета Глазго сообщили об эксперименте, в результате которого ученые смогли получить первую в истории фотографию квантовой запутанности частиц. Явления по меркам физики настолько странного, что даже великий ученый 20-го века Альберт Эйнштейн прозвал его «жутким действием на расстоянии». Достижение шотландских ученых очень важно для разработки новых технологий. Почему? Давайте разбираться.
Крупным финансовым компаниям и спецслужбам крайне важна сохранность конфиденциальной информации, поэтому все каналы передачи данных должны быть надежно защищены. В Китае для этого активно используется технология квантового шифрования — в 2017 году стране удалось провести защищенный сеанс связи между Пекином и Веной, на расстоянии 7,5 тысяч километров. Технология потихоньку проникает и в Россию — компания «Инфотекс» создала IP-телефон, который тоже защищает данные при помощи квантовых технологий.
Квантовые компьютеры все еще остаются мечтой, но эпоха квантовых коммуникаций уже наступила. Новый эксперимент, проведенный в Париже, впервые показал, что квантовое сообщение превосходит классические методы передачи информации. «Мы первыми продемонстрировали квантовый перевес в передаче информации, которая нужна двум сторонам для выполнения задачи», говори Элени Диаманти, инженер-электрик из Университета Сорбонны и соавтор исследования.
Ожидается, что квантовые вычисления позволят нам решать вычислительные задачи, которые не могут быть решены существующими классическими методами вычислений. В настоящее время принято считать, что самая первая дисциплина, которая получит мощнейший толчок от квантовых достижений, это квантовая химия. В 1982 году физик-лауреат Нобелевской премии Ричард Фейнман заметил, что симуляция, а затем и анализ молекул — настолько сложное дело для цифрового компьютера, что он становится практически бесполезен для этих дел.
За последние несколько лет некоторые материалы стали полигонами для физиков. Эти материалы не то чтобы сделаны из чего-то особенного — обычные частицы, протоны, нейтроны и электроны. Но они больше, чем просто сумма их частей. Эти материалы имеют целый набор любопытных свойств и явлений, а иногда даже приводили физиков к новым состояниям материи — помимо твердого, газообразного и жидкого, которые мы знаем с детства.
Демонстрация, которая перевернула идеи великого Исаака Ньютона о природе света, была невероятно простой. Ее «можно повторить с большой легкостью, где бы ни сияло солнце», говорил английский физик Томас Янг в ноябре 1803 года членам Королевского общества в Лондоне, описывая эксперимент, который сейчас называется экспериментом с двойной щелью. И Янг не был восторженным юнцом. Он придумал элегантный и тщательно продуманный эксперимент, демонстрирующий волновую природу света, и тем самым опроверг теорию Ньютона о том, что свет состоит из корпускул, то есть частиц.
Одна из самых знаменитых кинокартин о путешествиях во времени «Назад в будущее» не в последнюю очередь запомнилась благодаря чертовски стильному автомобилю марки DeLorean. Основной деталью, благодаря которой было возможно совершать временные скачки, был конденсатор потока (Flux Capacitor). И он так и оставался бы лишь фантазией сценаристов Боба Гейла и Роберта Земекиса, если бы группа ученых из Австрии и Швейцарии не создала самый настоящий конденсатор потока, применение которого для перемещений во времени пока под вопросом, но зато он полезен для кое-чего другого.
Сверхпроводники можно назвать одними из самых интересных и удивительных материалов в природе. Не поддающиеся логическому обсуждению квантово-механические эффекты приводят к тому, что у сверхпроводников ниже критической температуры совершенно исчезает электрическое сопротивление. Одного этого свойства достаточно, чтобы зажечь воображение. Ток, который может течь постоянно, не теряя никакой энергии, означает передачу энергии практически без потери в кабелях. Когда возобновляемые источники энергии начнут доминировать в сети и высоковольтные передачи через континенты станут непрерывными, кабели без потерь приведут к значительной экономии.
Исследователи из компании Toshiba придумали новый способ использования законов квантовой механики для отправки защищенных сообщений с использованием современных технологий. С использованием их идеи возможна отправка защищенных данных на расстояние до 550 километров. Ключ шифрования в этом случае не может быть получен ни одним из известных способов.
Есть гипотеза, точнее множество гипотез, согласно которым наш мозг представляет собой не что иное, как биохимический квантовый компьютер. В основе этих идей лежит предположение о том, что сознание необъяснимо на уровне классической механики и может быть объяснено только с привлечением постулатов квантовой механики, явлений суперпозиции, квантовой запутанности и других. Ученые из Калифорнийского университета в Санта-Барбаре через серию экспериментов решили выяснить — действительно ли наш мозг является квантовым компьютером.
В 1935 году, когда квантовая механика и общая теория относительности Эйнштейна были очень молоды, не шибко известный советский физик Матвей Бронштейн, будучи в возрасте 28 лет, сделал первое подробное исследование на тему согласования этих двух теорий в квантовой теории гравитации. Эта, «возможно, теория всего мира в целом», как писал Бронштейн, могла бы вытеснить классическое эйнштейново описание гравитации, в котором она видится кривыми в пространственно-временном континууме, и переписать его квантовым языком, как и всю остальную физику.
В небольшой лаборатории в пышной сельской местности в сотне километров к северу от Нью-Йорка с потолка свисает сложная путаница трубок и электроники. Это компьютер, пусть и беспорядочный на вид. И это не самый обычный компьютер. Возможно, на его роду написано стать одним из важнейших в истории. Квантовые компьютеры обещают производить вычисления далеко за пределами досягаемости любого обычного суперкомпьютера. Они могут произвести революции в сфере создания новых материалов, позволив имитировать поведение материи вплоть до атомного уровня. Они могут вывести криптографию и компьютерную безопасность на новый уровень, взламывая доныне неприступные коды. Есть даже надежда, что они выведут искусственный интеллект на новый уровень, помогут ему более эффективно просеивать и перерабатывать данные.
Мы живем в трехмерной Вселенной с тремя пространственными измерениями и одним дополнительным в виде времени. Однако эксперименты двух групп ученых показали, что наличие четвертого пространственного измерения действительно возможно и оно не ограничивается простыми направлениями вверх и вниз, влево и вправо, а также вперед и назад.
Общая теория относительности Эйнштейна, в которой гравитация рождается вследствие искривления пространства-времени, замечательна. Она была подтверждена с невероятным уровнем точности, в некоторых случаях до пятнадцати знаков после запятой. Одним из самых интересных ее предсказаний было существование гравитационных волн: ряби в пространстве-времени, которая свободно распространяется. Не так давно эти волны были пойманы детекторами LIGO и VIRGO.
Мы связываемся между собой при помощи частиц. Звонки и сообщения едут верхом на волнах света, веб-сайты и фотографии загружаются на электронах. Все коммуникации по своей сути физические. Информация записывается и передается реальным объектам, даже если мы их не видим. Физики также подключаются к миру, когда общаются с ним. Они отправляют вспышки света в направлении частиц или атомов и ждут, когда свет вернется обратно. Свет взаимодействует с частицами материи, и изменение поведения света проливает свет (извините за каламбур) на свойства частиц — хотя эти взаимодействия зачастую меняют и частицы. Процесс этого общения называется измерением.