Квантовая механика

Если вы думаете, что некоторые вещи из мира науки вас не касаются, вы глубоко ошибаетесь. Даже то, что кажется очень далеким в некотором роде влияет на вашу жизнь. Это относится и к квантовой механике. Она тоже часть нашего мира.

14 декабря 1900 года в мире физики родилась принципиально новая теория, впоследствии выросшая в невероятную для простого обывателя и не менее странную для физиков квантовую механику.

Уравнения фон Неймана, Гейзенберга и Шредингера известны даже школьникам, а сам Эйнштейн называл некоторые проявления квантмеха «ужасным действием на расстоянии». Туннельный эффект, квантовая телепортация, параллельные вселенные и принцип неопределенности — все это следствия странной и ускальзывающей теории квантовой механики. Странной, но работающей.

Как бозон Хиггса помогает раскрывать тайны Вселенной?

В 2012 году ученые сообщили об одном из величайших событий в области квантовой физики – открытии бозона Хиггса – фундаментальной частицы, несущей силы поля Хиггса и отвечающую за придание массы другим частицам. Предположение о существовании поля Хиггса впервые выдвинул физик Питер Хиггс в середине шестидесятых годов (в честь него названы и поле и частица). 2024 год, увы, стал последним в жизни этого выдающегося ученого – 8 апреля Питер Хиггс скончался в своем доме в Эдинбурге в возрасте 94 лет. Его беспрецедентное наследие, однако, продолжает оказывать огромное влияние на будущее физики элементарных частиц, как никакое другое открытие до него. Более того, если текущие измерения бозона Хиггса верны, то Вселенная нестабильна в своем нынешнем состоянии. Это, в свою очередь, означает, что нам придется пересмотреть все имеющиеся знания как о космосе, так и о физике элементарных частиц. Ну а новое открытие, о котором погоаорим в данной статье, лишь подливает масла в огонь.

Читать далее

Правда ли, что лето 2023 будет очень жарким в России и в мире?

Любите ли вы жару? Или напротив, держитесь подальше от Солнца? Вне зависимости от ответа и личных предпочтений, ученые считают, что нас ожидает все больше и больше солнечных дней. Так, аномальная жара в северо-западной Европе будет становится все более интенсивной, а на северо—западе Тихого океана температура во многих местах уже превышает сезонную норму на 6 градусов Цельсия. В то же самое время на другую сторону земного шара обрушилась целая серия тайфунов, а впереди – лесные пожары, ураганы и наводнения. По прогнозам специалистов, экстремальные периоды жары, обрушившиеся на планету в последние годы, станут неотъемлемой частью грядущего лета по всему миру, включая Россию. Согласно последним сообщениям синоптиков, лето 2023 года в нашей стране может стать самым жарким за последние 150 лет.

Читать далее

Как будущее способно влиять на прошлое?

Для всех нас привычным является то, что наше прошлое определяет наше будущее – поступки, которые мы совершаем приводят нас к чему-то. Это обычное явление, о котором многие даже не задумываются, ведь все кажется таким очевидным, правда же? И да, и нет – несмотря на очевидность происходящего, квантовая физика имеет иное мнение. Нобелевская премия по физике 2022 года подчеркнула проблемы, которые квантовые эксперименты создают для «локального реализма». Однако растущее число экспертов предлагает в качестве решения «ретропричинность», предполагая, что настоящие действия могут влиять на прошлые события, сохраняя тем самым локальность и реализм.

Читать далее

«Все везде и сразу» с точки зрения науки: какой может быть мультивселенная?

Тема мультивселенной пользуется невиданной популярностью. Да что там, она буквально везде – кинокомиксы, мультсериалы, компьютерные игры и даже оскароносные картины. Так, фильм студии А24 «Все везде и сразу», получил целых семь статуэток, включая номинацию за «лучший фильм», «лучший монтаж» и «дизайн костюмов». В фильме героиня Мишель Йео Эвелин Ван соединяется с версиями самой себя в параллельных вселенных, чтобы предотвратить разрушение мультивселенной. Эта захватывающая история, безусловно, выдумка, но вот идея не нова – еще в XVI веке итальянский философ Джордано Бруно предполагал существование невидимых миров, в которых события развиваются иначе, однако физики всерьез обратились к этой идее через 400 лет. Сегодня официальная наука относится к теории мультивселенной скептически, однако ее многомировая интерпретация все чаще привлекает внимание.

Читать далее

Ученые наблюдали новый вид квантовой запутанности внутри атомных ядер

Как устроена реальность? И не является ли она постоянной иллюзией? Физики десятилетиями пытаются ответить на эти вопросы, но чем больше они узнают о мире, тем более странным он становится. Мы знаем, что материя состоит из крошечных частиц, а их взаимодействие между собой едва ли можно представить. Взять, к примеру, квантовую суперпозицию – согласно этому принципу частицы могут находиться в нескольких состояниях одновременно, однако определить результат их состояния до момента наблюдения невозможно. Еще одним фундаментальным принципом физики элементарных частиц является квантовая запутанность, согласно которой частицы остаются взаимосвязанными вне зависимости от расстояния между ними. И хотя «привычная» запутанность демонстрирует иллюзорность нашей реальности, в начале 2023 года физики из Брукхейвенской национальной лаборатории (США) сообщили о ее новом виде, обнаруженном впервые в истории.

Читать далее

Могут ли частицы появляться из пустоты?

Cовременная физика переживает нелегкие времена. На одной стороне лежит квантовая теория, которая описывает устройство Вселенной на уровне атомов, а на другой – Общая теория относительности Эйнштейна (ОТО), согласно которой пространство и время могут искривляться под влиянием гравитации. Проблема заключается в том, что по отдельности и ОТО и квантовая механика работают прекрасно, но противоречат постулатам друг друга. По этой причине физики трудятся над созданием единой «теории всего» на протяжении последних 90 лет. Вот только с каждым новым открытием вопросов становится все больше, однако исследователи не оставляют попыток докопаться до истины – результаты первого в своем роде эксперимента показали, что в искривленной и расширяющейся вселенной пары частиц появляются из пустого пространства. Полученный в ходе моделирования результат вновь возвращает нас к вопросу о том, как что-то может возникнуть из ничего. Словом, шаг вперед и два назад.

Читать далее

Обладают ли черные дыры квантовыми свойствами?

Черные дыры – одни из самых загадочных объектов на просторах Вселенной. И хотя физики давно догадывались об их существовании, статус реальных космических обитателей черные дыры получили несколько лет назад. Открытие гравитационных волн в 2017 году и первый снимок черной дыры (2019 год) ознаменовали собой новую эру космических исследований – в самом ближайшем будущем мы узнаем много нового о Вселенной и существующих на ее просторах объектах. Так, недавно в журнале Physical Review Letters вышла статья, авторы которой утверждают что эти космические монстры обладают уникальными и причудливыми квантовыми свойствами. Новое исследование имеет отношение к теории квантовой гравитации – одной из нерешенных загадок современной науки. В основе работы лежит компьютерное моделирование – с его помощью физики обнаружили что черные дыры обладают свойствами, характерными для квантовых частиц. Удивительно, но исследователи полагают, что эти космические монстры могут быть одновременно маленькими и большими, тяжелыми и легкими, мертвыми и живыми.

Читать далее

Есть ли у нашей Вселенной зеркальный двойник?

Сегодня теория множественности миров является частью массовой культуры и постоянно присутствует в фильмах и сериалах. При этом Мультивселенная не выдумка фантастов – в ее основе лежат научные теории, описывающие устройство нашего мира. Наиболее популярной является теория инфляции, согласно которой Вселенная начала расширяться после Большого взрыва, а ее свойства объясняет структура и распределение галактик. Профессор Стэндфордского университета Андрей Линде является сторонником теории Мультиверса. Он отмечает, что наше понимание реальности неполное, а существование параллельных вселенных невозможно подтвердить экспериментально (по крайней мере пока). Но что, если посмотреть на Вселенную иначе, допустив существование всего одной альтернативной реальности – так называемой зеркальной Вселенной? Исследователи полагают, что с ее помощью можно разрешить кризис космологии. Но как? Давайте разбираться!

Читать далее

Существует ли реальность без наблюдателя?

Из чего состоит реальность? Ответ на этот вопрос, вероятно, сокрыт в квантовой механике – разделе физики, который описывает Вселенную на уровне элементарных частиц и их взаимодействий друг с другом. Знакомство с квантовым миром следует начинать с фундаментальных безмассовых частиц – фотонов, которые способны вести себя и как частица и как волна (но не одновременно). Этот принцип известен как корпускулярно-волновой дуализм, а в его основе лежат идеи Исаака Ньютона. В ХХ веке их развитие представил физик-теоретик Макс Планк, а усилия Нильса Бора (еще одного основоположника квантовой механики) привели к постулированию принципа дополнительности, согласно которому решающим звеном наблюдаемой картины является наблюдатель. Если он измеряет свойства квантового объекта как частицы, то свет ведет себя как частица и наоборот. Но почему? И что поведение крохотных частиц говорит о нашей реальности?

Читать далее

Почему W-бозон может перевернуть наши знания о Вселенной?

Что мы знаем о Вселенной, в которой живем? Чтобы хоть немного понять устройство окружающего мира, исследователи разработали мощные научные инструменты. Такие телескопы как Хаббл и Джеймс Уэбб, что начнет полноценную работу уже в июне 2022 года, в прямом смысле слова открыли нам глаза. Но изучать Вселенную можно и на Земле, например, с помощью ускорителей частиц. Ведь согласно физическим теориям, все вокруг нас (как и мы сами) состоит из невидимых глазу частиц, что работают по своим законам. Общая теория относительности Эйнштейна блестяще описывает нашу повседневную реальность, но когда речь заходит об элементарных частицах, ОТО не работает, а знаменитую Стандартную модель элементарных частиц все чаще называют неполной. Так, согласно результатам нового исследования, частица W—бозон, кажется на 0,1% тяжелее других. И если это действительно так, нас ожидает пересмотр самой успешной научной теории всех времен.

Читать далее

Атомные часы доказали гравитационное замедление времени

Гравитация является самой главной силой во Вселенной. Именно она удерживает планеты на орбите вокруг Солнца. Она же удерживает Луну на земной орбите и создает звезды и планеты, притягивая материал, из которого они состоят. Но что особенно интересно, так это способность гравитации притягивать свет. Этот принцип открыл Альберт Эйнштейн, описав гравитацию как кривую в пространстве – она огибает объект, например звезду или планету. И если поблизости находится другой объект, он также втягивается в кривую. Согласно Общей теории относительности (ОТО), время движется медленнее вблизи массивных объектов, так как их гравитационная сила изгибает пространство-время, которые неразрывно связаны. Это означает, что большие массы деформируют ткань пространства-времени своим огромным гравитационным влиянием. Недавно в научном журнале Nature вышла интересная статья. Ее авторы утверждают, что атомные часы, разделенные всего несколькими сантиметрами, измеряют разные скорости времени – как и предсказывал Эйнштейн.

Читать далее

Что происходит: квантовые компьютеры

Нам с вами довелось жить в удивительное время. Не самое спокойное, конечно, но посмотрите, чего добилась наука – мы не просто дробим материю на атомы, мы создаем квантовые технологии и даже умеем ими пользоваться. Взять, к примеру, квантовые компьютеры. Эти машины выполняют вычисления на основе вероятности состояния объекта до его измерения — вместо 1 или 0 секунд. Это означает, что они могут обрабатывать экспоненциально больше данных по сравнению с классическими компьютерами, которые выполняют простые логические задачи и операции. Подобные технологии разрабатываются в течение десятилетий и по крайней мере две программы, написанные для квантового компьютера, датированы 90-ми гг.ХХ века. Одна из них раскладывает большие числа на простые множители и тем самым позволяет взломать нынешнее компьютерное шифрование. Вторая программа может осуществлять поиски, требующие квадратный корень от времени, которое затрачивается на них обычными компьютерами.

Читать далее

Физики впервые связали два разных квантовых объекта

Наш мир устроен невероятно сложно. Если посмотреть в телескоп, то перед нами откроется целая Вселенная, бесконечная и расширяющаяся все быстрее и быстрее. От одной мысли о том, что в одной лишь наблюдаемой Вселенной существует около 10 триллионов галактик, может закружиться голова. Но отложив в сторону телескоп, мы вскоре понимаем, что вокруг нас (и внутри) обитают триллионы крошечных бактерий, микроорганизмов и вирусов, таких, как COVID-19. И если с помощью специальных инструментов посмотреть на этот скрытый мир поближе, мы, в конечном итоге узрим микромир, наполненный не только бактериями, но и атомами, из которых они состоят. В результате, мы сталкиваемся со сложным макромиром с его планетами и галактиками, и микромиром, работающим по своим собственным законам. Как отмечают физики, квантовая механика позволяет описать движение электронов и протонов, а также изучить, какими законами управляется микромир. Интересно, что одним из нерешенных и наиболее острых вопросов современной физики является несогласованность квантовой механики и Общей теории относительности Эйнштейна (ОТО), которая описывает, как устроен и наш мир и мир за пределами Земли. А недавно ученые пошли еще дальше. Они не только связали два квантово-запутанных объекта, но и изобрели новый подход для квантовых вычислений.

Читать далее

Что такое кристаллы времени и почему ученые ими одержимы?

О чем вы думаете когда слышите о кристаллах времени? Мне сразу представляется что-то наподобие тессеракта из мультивселенной Марвел или очередное безумное изобретение гениального Рика из «Рик и Морти». Только представьте – таинственные кристаллы времени, способные перенести их обладателя как в прошлое, так и в будущее. Но, я, конечно, пересмотрела научной фантастики и в реальности кристаллы времени или кристаллы Вильчека не способны перемещать кого-либо или что-либо во времени. И все же, физики ими буквально одержимы. Причина этой одержимости на самом деле проста: по сути, кристалл времени – это особая фаза материи, которая постоянно меняется, но, похоже, не использует энергии. Только представьте, объект, части которого движутся в регулярном, повторяющемся цикле, поддерживает это постоянное изменение без сжигания какой-либо энергии. Вообще. Кристаллы времени также являются первыми объектами, которые спонтанно нарушают «симметрию перемещения во времени» – обычное правило, согласно которому стабильный объект будет оставаться неизменным на протяжении всего времени. Кристаллы времени одновременно стабильны и постоянно меняются через определенные промежутки времени.

Читать далее

Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Ну что, поговорим немного о квантовой механике? Согласна, довольно сложная тема, но эта сложность лишь придает ей пикантности и остроты. Как и многочисленные предположения о существовании Мультивселенной и параллельных реальностей. К слову сказать, современная физика изобилует подобными идеями, но мы с вами остановимся на одной из, по моему скромному мнению, самых интересных из них – многомировой интерпретации квантовой механики или интерпретации Эверетта. В 1954 году, будучи аспирантом Принстонского университета, физик Хью Эверетт пришел к революционной интерпретации нерелятивистской квантовой механики, которую полностью развил за два последующих года. Однако научное сообщество не придало особого внимания трудам Эверетта, так как работа не вела к новым предсказаниям и к тому же выглядела парадоксальной и в целом ненужной. Более того, его труд никак не повлиял на основную линию развития теоретической физики и создание Стандартной модели физики элементарных частиц. И все же, десятилетия спустя работа Эверетта привлекла внимание космологов. И хотя практических последствий она по-прежнему не принесла, это не значит, что видение мира, описанное в работе выдающегося физика, не стоит нашего с вами внимания.

Читать далее

Наши радиосигналы могут услышать обитатели 75 звездных систем

Одним из моих любимых мультипликационных персонажей является Люррр – правитель планеты Омикрон Персей 8 из уже культовой Футурамы. И хотя выглядит он не самым привлекательным образом, его супруга явно находит его симпатичным. Но речь не об этом, в конце концов мы с вами собрались не обсуждать внешность вымышленных инопланетных персонажей (хотя тема довольно занятная). Люррр в этой истории интересен тем, что больше всего на свете любит смотреть земные телесериалы. Но так как Омикрон Персей 8 находится от Земли на расстоянии 1000 световых лет, телесигнал достиг их планеты когда земляне дружно отпраздновали трехтысячный год. Любимым же шоу инопланетного правителя оказался сериал 1990-х «Одинокая женщина адвокат» (у нее, кстати, самая короткая юбка в мире), но вещание передачи было прервано из-за пролитого на пульты управления пива. Что и послужило причиной вторжения омикронцев на нашу планету в 3000 году. Классный сюжет, правда? Но если говорить серьезно, то может ли нечто хотя бы отдаленно похожее на сюжет Футурамы произойти на самом деле? Ведь наша планета и правда вещает в открытый космос, причем уже более ста лет. К тому же, результаты нового исследования показали, что наши радиосигналы достигли 75 звездных систем. И кто знает какие телешоу могут понравится тамошним обитателям.

Читать далее

Что квантовая физика может рассказать о природе реальности?

Удивительная способность предков каждого из ныне живущих на планете людей к выживанию позволила нам с вами наслаждаться всеми благами и достижениями цивилизации. Но раз уж на то пошло и миллионы лет эволюции позволили нам познать самих себя и окружающий мир, то что за это время нам удалось узнать о Вселенной? На самом деле не так уж много – по меркам той же Вселенной мгновение. И все же, все существующие на сегодняшний день физические теории описывают мир невероятно точно. Так, и классическая физика и квантовая механика по отдельности превосходно работают. Вот только все попытки объединить их в единую теорию по-прежнему не увенчались успехом, а значит наше понимание Вселенной и реальности нельзя назвать полноценным. В начале 1900-х годов рождение квантовой физики ясно показало, что свет состоит из крошечных неделимых единиц, или квантов – энергии, которую мы называем фотонами. Эксперимент Юнга, проведенный с одиночными фотонами или даже отдельными частицами материи, такими как электроны и нейтроны, представляет собой головоломку, поднимающую фундаментальные вопросы о самой природе реальности. Решить ее ученые не могут до сих пор.

Читать далее

Суперкомпьютер обратил вспять космические часы

Наша Вселенная возникла около четырнадцати миллиардов лет назад в результате катастрофического события – Большого взрыва. В момент своего рождения она была крошечной, но затем расширилась до своих нынешних размеров. То, какой была Вселенная в первые доли секунды после Большого взрыва давно интересует ученых но миллиарды лет ее эволюции, можно сказать, загнали их в тупик. Недавно с помощью суперкомпьютера международной команде исследователей удалось повернуть время вспять и определить, как выглядела Вселенная в момент своего рождения. В ходе нового исследования международная команда астрономов протестировали новый метод реконструкции состояния ранней Вселенной, применив его к 4000 смоделированных Вселенных с помощью суперкомпьютера ATERUI II Национальной астрономической обсерватории Японии. Результаты исследования показали, что примененный метод совместно с новыми наблюдениями позволит ученым наложить более строгие ограничения на инфляцию – один из самых загадочных процессов в истории космоса.

Читать далее

Что доказывает теорема Пуанкаре о возвращении

Все началось еще в конце XIX века, когда ученый из Франции, Анри Пуанкаре, изучал различные части систем, которые могут быть полностью проанализированы. Как обычно, звучит это не так сложно, но именно его труды легли в основу большой задачи и стали одной из загадок, которую ученые современности называют ”Задачами тысячелетия”. Думаю вы легко согласитесь, что если подождать достаточное количество времени, то планеты в небе выстроятся в нужную вам линию. Так же будет и с частицами газа или жидкости, которые могут сколько угодно менять свое положение, но теоретически в один из моментов времени выстроятся относительно друг друга так, как они располагались в момент начала измерений. На словах все просто — рано или поздно это случится, иначе быть не может. Вот только на деле доказать это довольно сложно. Именно над этим и работал Анри Пуанкаре больше века назад. Позже его теории были доказаны, но от этого не стали менее интересными.

Читать далее

Существует ли объективная реальность?

Что такое реальность? И кто может дать ответ на этот вопрос? В прошлом году ученые из Университета Хериота-Уатта в Шотландии проверили интересный эксперимент, результаты которого предполагают, что объективной реальности может не существовать. Несмотря на то, что когда-то эта идея была просто теорией, теперь исследователи смогли перенести ее в стены университетской лаборатории, а значит проверить. Так как в квантовом мире измерения с разных позиций дают различные результаты, но при этом одинаково верны, проведенный эксперимент показал, что в мире квантовой физики два человека могут наблюдать одно и то же событие и разные результаты; при этом ни одно из этих двух событий не может быть воспринято как неправильное. Иными словами, если два человека видят две разные реальности, то договориться какая из них правильная они не смогут. Этот парадокс известен как «парадокс друга Вигнера» и теперь ученые экспериментально его доказали.

Читать далее