Сверхпроводник LK-99 на самом деле фальшивка?

Лето – идеальное время для того, чтобы что-то стало модным в социальных сетях. Одной из наиболее неожиданных тем, привлекших всеобщее внимание, стала новость о создании сверхпроводника комнатных температур, который мог бы проложить путь для квантовых вычислений и высокоскоростных поездов. Но правда ли сверхпроводник LK-99 существует? Ранее мы рассказывали об этом инновационном устройстве и о том, что опубликованные статьи не прошли экспертную оценку, а также оказались в публичном доступе без одобрения двух соавторов. Теперь, после последующих экспериментов ученых по всему миру, стало понятно, что LK-99 не такой уж и особенный. Но если изобретение южнокорейских исследователей – это не сверхпроводник, то почему ученые изначально думали, что он им является? Давайте разбираться!

Южнокорейский сверхпроводник не оправдал ожиданий, однако исследования в этой области продолжаются.

Для чего нужны сверхпроводники?

За последние несколько недель среди ученых и общественности наблюдался огромный всплеск интереса к материалу под названием LK-99. Все началось в конце июля, когда южнокорейские исследователи опубликовали две статьи на сервере препринтов arXiv (где публикуются научные статьи, не прошедшие рецензирование). В работах исследователи сообщили о возможных показателях сверхпроводимости в LK-99, включая неожиданно низкое электрическое сопротивление и частичную левитацию в магнитном поле.

Потенциальное открытие буквально взорвало такие социальные сети как Х (в прошлом Твиттер) и Реддит, а также широко освещалось в традиционных средствах массовой информации. Безусловно, такой интерес к теме сверхпроводников радует ученых, однако сомнения в революционном изобретении у экспертов появились сразу. И, как оказалось, не просто так – первые попытки воспроизвести эксперимент исследователей и Южной Кореи не увенчались успехом.

Проводники — тела или материалы, через которые электрические заряды могут свободно переходить от заряженного тела к незаряженному.

Больше по теме: Правда ли, что ученые создали первый в мире сверхпроводник комнатных температур и почему это важно?

Понять ажиотаж и повышенное внимание к LK-99 нетрудно, ведь обычные проводники знакомы всем – именно благодаря им электрический ток проходит по проводам, кабелям, питая электроприборы. Классические проводники представляют собой металлы, в которых электроны могут легко перемещаться через “кристаллическую решетку” атомов (из которых состоит материал).

Но есть проблема – при движении электронов в проводниках происходит потеря энергии – этот эффект называется электрическим сопротивлением.

Именно из-за сопротивления происходит большая потеря энергии, а избежать ее можно с помощью сверхпроводящих материалов – в них сопротивление равно нулю и электрический ток может протекать плавно. Вот только все существующие на сегодняшний день сверхпроводники можно использовать только при очень низких температурах. И это, очевидно, проблема.

LK-99 – это не сверхпроводник?

Начнем с того, что сверхпроводники очень полезны – их можно использовать для создания чрезвычайно мощных электромагнитов, таких как МРТ-сканеры, ускорители частиц, термоядерные реакторы и даже левитирующие поезда. Но так как современные сверхпроводники работают при экстремально низких температурах, приходится использовать дорогостоящие охлаждающие установки. Но что насчет LK-99?

LK-99 – это соединение, содержащее кислород, фосфор, свинец и медь. Об этом материале по-прежнему мало что известно, а когда появились статьи, никто не знал может ли новый материал вообще проводить электричество. Чтобы разобраться в происходящем, ученые во всем мире направили свои усилия на то, чтобы воспроизвести результат, полученный южнокорейскими исследователями.

Сверхпроводник LK-99 стал настоящей сенсацией

Хотите всегда быть в курсе новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

И хотя они еще в самом начале работы, уже сегодня стало понятно, что соединение LK-99, описанное авторами, не является сверхпроводником и даже не металлом. Но если новый материал не сверхпроводник, то почему ученые считали его таковым?

Как показали результаты одного интересного исследования, ответ заключается в том, что примесь в исходных образцах LK-99 – сульфид меди – могла бы объяснить часть того, что наблюдали эксперты. Так, частичная левитация LK-99, которая могла бы указывать на свойство сверхпроводников, по-видимому, вызвана ферромагнетизмом – эффектом, который наблюдается в железе и многих других материалах.

Сверхпроводник комнатной температуры открыл бы множество возможностей, включая создание мощных квантовых компьютеров. Но это – не LK-99

Отметим также, что через несколько недель после опубликованных препринтов ни один ученый не смог повторить полученные результаты. На самом деле исследователи обнаружили, что LK-99 – никакой не проводник а... изолятор.

Таким образом, хотя никто не смог доказать, что первоначальные образцы LK-99 не обладают сверхпроводимостью, имеющиеся данные свидетельствуют о том, что нет никаких причин и дальше изучать «революционный метраил». Увы.

Что дальше?

После того, как эксперты определились с тем, что LK-99 не является сверхпроводником комнатных температур, вопрос о создании подобного материала остается открытым. Судя по имеющимся на сегодняшний день научным исследованиям, поиск материала, способного передавать электрический ток без потери энергии продолжается.

Хорошие новости, к счастью, есть – за последние несколько лет был достигнут значительный прогресс в создании нулевого сопротивления в обычных условиях: исследователи нашли альтернативный путь к нулевому сопротивлению при комнатной температуре в так называемых топологических изоляторах.

Топологический изолятор — особый тип материала, который в объёме представляет собой диэлектрик (изолятор), а на поверхности проводит электрический ток.

Топологические изоляторы – материалы, которые позволяют электронам перемещаться только по своим краям или поверхностям, в некоторых случаях без сопротивления.

Графен – материал, изготовленный из листов углерода толщиной всего в один атом, можно превратить в топологический изолятор в сильном магнитном поле. Вот только требуемое магнитное поле настолько велико, что его можно создать лишь в нескольких лабораториях по всему миру.

Способность LK-99 левитировать не делает материал сверхпроводником

Существуют и другие типы топологических изоляторов, которые работают без внешнего магнитного поля. Современные версии этих материалов демонстрируют нулевую стойкость только при очень низких температурах, но, по-видимому, нет причин, по которым они не могли бы работать при комнатной температуре.

Читайте также: Создан новый тип металла, в котором электроны ведут себя как жидкость

К сожалению, подобные материалы могут пропускать лишь ограниченное количество тока и, вероятно, непригодны для создания мощных магнитов. Но они все еще могут быть полезны для передачи крошечных электрических сигналов, используемых в компьютерных чипах и ученые активно работают в этом направлении.

Новости партнеров
Платформа Polymarket может выпустить стейблкоин на фоне ослабления давления со стороны регуляторов США
Платформа Polymarket может выпустить стейблкоин на фоне ослабления давления со стороны регуляторов США
Что изменится в iPhone 17 после появления новой беспроводной зарядки Qi2. Спойлер: не скорость
Что изменится в iPhone 17 после появления новой беспроводной зарядки Qi2. Спойлер: не скорость
Как в WhatsApp на Android отправлять сообщения себе
Как в WhatsApp на Android отправлять сообщения себе