Искусственный интеллект MIT научился тренировать нейросети быстрее, чем когда-либо

В попытке «демократизировать ИИ» ученые Массачусетского технологического института нашли способ использовать искусственный интеллект для гораздо более эффективного обучения систем машинного обучения — то есть, нейросетей. Они надеются, что новый алгоритм, позволяющий сэкономить время и средства, позволит ограниченным в ресурсах исследователям и компаниям автоматизировать проектирование нейронных сетей. Другими словами, сокращая время и затраты, они могли бы сделать эту технику ИИ более доступной.

Нейросети учатся быстрее

Новая область искусственного интеллекта включает использование алгоритмов для автоматического проектирования нейросетей, которые являются более точными и эффективными, чем разработанные человеческими инженерами. Но эта технология нейронно-архитектурного поиска (neural architecture search, NAS) является затратной с точки зрения вычислительной мощности.

Самый современный алгоритм NAS, недавно разработанный Google для работы на куче графических процессоров, потратил 48 000 GPU-часов для создания одной сверточной нейронной сети, которая используется для классификации изображений и задач обнаружения. У Google есть возможность параллельно запускать сотни графических процессоров и другого специализированного оборудования параллельно, но такое недоступно для многих других.

Алгоритм NAS, представленный Массачусетским технологическим институтом, может напрямую обучать специализированные сверточные нейросети (CNN) для целевых аппаратных платформ — при работе с массивным набором данных изображений — всего за 200 GPU-часов, что значительно расширяет потенциальное использование этих типов алгоритмов.

По мнению ученых, ограниченные в ресурсах исследователи и компании могли бы извлечь выгоду из алгоритма в виде экономии времени и затрат. Общей целью является «демократизация ИИ», говорит соавтор исследования Сонг Хан, доцент кафедры электротехники и компьютерных наук Microsystems Technology Laboratories в MIT. «Мы хотим, чтобы как эксперты по искусственному интеллекту, так и неспециалисты эффективно проектировали архитектуры нейросетей с помощью простого решения, которое быстро работает на конкретном оборудовании».

Однако он добавляет, что такие NAS-алгоритмы никогда не заменят инженеров-людей. «Цель состоит в том, чтобы избавиться от повторяющейся и утомительной работы, связанной с проектированием и усовершенствованием архитектуры нейронных сетей».

Что ж, все это только ускоряет наступление общего искусственного интеллекта. Кстати, почитайте наш материал про Демиса Хассабиса, основателя DeepMind — одной из самых многообещающих компаний в области ИИ.

Новости партнеров
POCO F6 или POCO F7 — какой смартфон лучше и почему
POCO F6 или POCO F7 — какой смартфон лучше и почему
Вышла iOS 18.6 beta 2. Что нового и стоит ли качать ее на iPhone
Вышла iOS 18.6 beta 2. Что нового и стоит ли качать ее на iPhone
Глава SEC подтвердил, что регулятор поддерживает сферу токенизации реальных активов. Почему это важно?
Глава SEC подтвердил, что регулятор поддерживает сферу токенизации реальных активов. Почему это важно?