Всякий раз, когда мы раздвигаем границы знаний, этому сопутствует риск и перспектива награды. Рисков много: не найти ничего нового, провести неудачный или неработающий эксперимент, вызвать разрушения, если все пойдет наперекосяк. Но вознаграждение может быть огромным: получение новых знаний, новых технологий и прорыв для всей человеческой науки.
Голограммы, пожалуй, находятся в числе самых интересных «плоских» объектов, которые могут создать люди. Являясь полностью трехмерным набором информации, закодированным на двумерной поверхности, голограммы могут менять свой вид в зависимости от вашей точки зрения. И хотя ученые утверждают, что мы можем воспринимать лишь три пространственных измерения, их на самом деле может быть намного больше. Следовательно, появляется интригующая возможность того, что мы можем быть голографической проекцией многомерной Вселенной, в некотором смысле.
Знаете поговорку «держи друзей близко, но врагов держи еще ближе»? Так вот, эта поговорка не работает, если говорить о черных дырах. Это злейшие враги, которые только могут быть у человека, и вот их нужно держать как можно дальше. Ведь мы говорим о регионах космоса, в которых вещество упаковано так плотно, что единственный способ убраться оттуда — двигаться быстрее скорости света. Но как вы знаете, ничто не может двигаться быстрее скорости света. Так что убрать не получится.
В конце прошлого года два разных инструмента на массивном субатомном ускорителе частиц, который нам известен как Большой адронный коллайдер (БАК), кое-что увидели. Никто не знает, чем был обусловлен всплеск данных — он взялся из пар протонов, которые сталкивались в детекторах в одно время с одной энергией. Изучая подобные столкновения в обратном направлении, физики выясняют подробности смерти и распада частиц покрупнее. Обычно.
Идеальный плащ-невидимка, как у Гарри Поттера, может быть физически невозможным, показывает новое исследование. Ученые показывают, что даже самые лучшие плащи невидимости смогут спрятать объект лишь от нескольких наблюдателей, тогда как другие наблюдатели, движущиеся по отношению к первой группе, увидят искажения. Физики Джад Халимех из Университета Людвига Максимилиана в Мюнхене, Германия, и Роберт Томпсон из Университета Отаго в Новой Зеландии опубликовали статью об ограничениях плащей-невидимок в недавнем выпуске Physical Review A.
В свете последнего анализа распада прелестных мезонов, ученые заговорили о рассвете новой эры — так называемой «новой физики». Важный вклад в анализ был сделан физиками Института ядерной физики Польской академии наук в Польше (IFJ PAN). Пока мы не можем назвать это открытием. Пока. Тем не менее кое-что указывает на то, что физики, работающие на ускорителе БАК в Европейской организации ядерных исследований (ЦЕРН) возле Женевы, могут увидеть первые следы физики за пределами существующей теории, описывающей структуру вещества. Это указание вытекает из последнего анализа данных, собранных экспериментом LHCb в 2011-2012 годы.
У Меркурия есть необычное свойство: он довольно темный по сравнению с другими планетами и твердыми телами Солнечной системы. Альбедо Меркурия — мера отражения света телом — ниже, чем у Земли, Венеры и Марса. В зависимости от того, какое определение альбедо вы используете, отраженный им свет даже ниже, чем лунный. Простым объяснением было бы то, что внешние слои Меркурия просто богаче темным элементом вроде железа, но внешняя кора Луны, на самом деле, содержит еще больше железа, чем кора Меркурия (большая часть железа Меркурия, как полагают, находится в жидком ядре планеты). Почему же тогда Меркурий так тяжело разглядеть?
Возможно, крупнейшее открытие о Вселенной мы сделали в конце прошлого века, обнаружив одну из самых странных космических истин: далекие галактики не просто улетают от нас, пока время движется вперед, но и улетают все быстрее и быстрее. Открытие ускоряющегося расширения Вселенной в рамках Supernova Cosmology Project при помощи команды High-z Supernova Search Team принесло ученым Нобелевскую премию по физике. Пока это одно из самых странных и необычных явлений во Вселенной.
Гравитацияв виде гравитационных волн в настоящее время витает в умах многих людей. Мы все испытываем силу тяжести. Подпрыгните — и вы вернетесь на землю. К сожалению для всех, кто хочет стать сверхчеловеком. Но что, если отключить гравитацию? Если однажды сила тяжести исчезнет, полет в космос будет меньшим из зол. Физики уверены, что такого никогда не произойдет. Но что мешает нам проводить мысленные эксперименты? И что думают эксперты на тему внезапного исчезновения гравитации?
Более 400 лет назад ученый эпохи Возрождения Николай Коперник разделил наше высокомерие на ноль, показав, что наша планета больше не является центром Солнечной системы. С каждой последующей научной революцией, каждая другая позиция во Вселенной, которой дорожили люди, становилась незначительной, раскрывая холодную правду: наш вид, космологически говоря, лишь мелкое пятнышко, мельчайшее из всех, на голубой планете. Новый подсчет экзопланет показал, что Земля лишь одна из 700 миллионов триллионов планет земного типа во всей наблюдаемой Вселенной. Но средний возраст этих планет — куда меньше возраста Земли — и их типичное положение — в галактиках, который сильно отличаются от Млечного Пути — могут перевернуть коперниканский принцип с ног на голову.
Что ж, у вас было достаточно времени, чтобы подумать об открытии LIGO гравитационных волн, понять, что это такое, и сделать для себя интересные выводы. Значимость этого открытия потрясла мир, поэтому вам будет интересно узнать о менее известных его сторонах. Например…
Ученые очень хотят назвать тетранейтроном теоретическую частицу, существование которой пока не подтверждено. Так можно было бы сделать, будь она следствием из некоей существующей теоретической модели, предсказанной некоей теорией. Но тетранейтрон противоречит существующим теориям — он должен быть невозможным. На фоне всеобщего кипежа о гравитационных волнах, в мире науки проскочил эксперимент, предоставивший убедительное доказательство в пользу тетранейтрона. Это пока не полное подтверждение, но если выводы нового исследования найдут подтверждение, все будет очень и очень странно.
Напомним, на днях ученые LIGO объявили о крупном прорыве в области физики, астрофизики и нашего изучения Вселенной: открытие гравитационных волн, предсказанных еще Альбертом Эйнштейном 100 лет назад. Ресурсу Gizmodo удалось найти доктора Эмбер Ставер из обсерватории Ливингстона в Луизиане, коллаборации LIGO, и подробно расспросить о том, что это значит для физики. Понимаем, что за несколько статей к глобальному пониманию нового способа постигать наш мир прийти будет сложновато, но будем стараться.
Итак, ученые обнаружили гравитационные волны — рябь пространства-времени. Альберт Эйнштейн предположил их существование еще 100 лет назад, и прямые наблюдения обеспечили последнее доказательство шедевра великого ученого: общей теории относительности. Ученые из Калтеха и MIT обнаружили гравитационную волну, порожденную двумя сталкивающимися черными дырами.
Дэвид Рейтце, исполнительный директор лаборатории LIGO, вчера утром вышел на подиум National Press Building в Вашингтоне и сказал слова, которых ученые ждали очень давно: «Мы обнаружили гравитационные волны». И набитый людьми зал в здании Калтеха в Пасадене, где собрались люди, чтобы посмотреть живую трансляцию, разразился бурными аплодисментами.
О первом прямом обнаружении гравитационных волн, как ожидают, будет заявлено 11 февраля учеными обсерватории LIGO (Advanced Laser Interferometer Gravitational-Wave Observatory). Используя два гигантских детектора LIGO — один в Ливингстоне, штат Луизиана, а другой в Хэнфорде, штат Вашингтон — ученые измеряли рябь пространства-времени, которая рождается в процессе столкновения двух черных дыр и, похоже, наконец нашли, что искали.
В Китае прошли успешные испытания реактора термоядерного синтеза. В рамках эксперимента внутри реактора плазму разогрели до 50 миллионов градусов Цельсия (выше температуры ядра Солнца). Время удержания плазмы составило более полутора минут.
Что общего у гладеньких ноутбуков со смартфонами и куском угля? Ответ не так прост, как кажется: редкоземельные элементы. Это важные компоненты современных технологий, от айфонов до ракет, и всего, что между. И хотя их можно найти по всему миру, выделить их невероятно трудно, а еще труднее достать их из их матриц (обычно глины или других геологических отложений) без использования агрессивных химикатов или других методов, которые считаются вредными для окружающей среды. К этой проблеме добавляется и тот факт, что большинство редкоземельных элементов берут в Китае, оставляя другие страны кое-как справляться с их дефицитом.
Каждый день, уже миллиарды лет, Солнце встает над горизонтом Земли. Оно в 150 миллионах километрах от нас, но светит так ярко в небе, что невозможно смотреть без риска повредить глаза. На поверхности Солнца температура достигает 5500 градусов — достаточно, чтобы любой зонд истлел задолго до того, как подлетит к поверхности. Короче говоря, Солнце слишком горячее, чтобы держать его в кулаке. Но это не значит, что его нельзя изучать. В нашей галактике больше 100 миллиардов звезд, которые мы также не можем посетить. При этом нам удается искать и находить способы их изучения.
Хотя в теории время можно делить на бесконечно малые интервалы, мельчайшим физически осмысленным интервалом времени считается планковское время, которое приблизительно равно 10-43 секунды. Этот конечный предел означает, что два события не могут быть разделены временем, которое будет меньше этого промежутка. Но теперь, в новой работе физики пришли к выводу, что кратчайший физически осмысленный интервал времени может быть на самом деле на несколько порядков больше времени Планка. Кроме того, физики продемонстрировали, что существование такого минимального времени изменяет базовые уравнения квантовой механики, и поскольку квантовая механика описывает все физические системы на мельчайших масштабах, это также изменяет и описание всех квантово-механических систем.