Лаборатория 2.0: скоро компьютеры совсем заменят экспериментальную науку

Мы живем в окружении высокотехнологичных материалов и химических веществ, которые позволяют работать нашим батареям, солнечным элементам, мобильным телефонам. Но разработка новых технологий требует существенных вложений времени, денег, а иногда и рискованных экспериментов.

К счастью, теперь у нас есть секретное оружие, которое позволяет нам экономить время, деньги и не рисковать: компьютеры.


Благодаря закону Мура и ряду прорывов в области физики, химии, компьютерных наук и математики за последние 50 лет, мы можем перенести кучу экспериментов на компьютеры и использовать исключительно моделирование. Оно позволяет нам испытывать химические вещества, препараты и высокотехнологичные материалы на компьютерах еще до создания в лаборатории, что сохраняет время и деньги и снижает риски. Но чтобы полностью отказаться от лабораторий, нам нужны компьютерные модели, которые будут достаточно надежды, чтобы обеспечивать нам исключительно правильные результаты. А это непросто.

Грандиозная задача

Почему непросто? Потому что химия — это квантовая механика взаимодействующих электронов, в основе которой обычно лежит уравнение Шредингера — и требует колоссальных объемов памяти и времени на моделирование.

Например, чтобы изучить взаимодействие трех молекул воды, нам нужно сохранить около 1080 фрагментов данных и проделать минимум 10320 математических операций. Это значит, что нам придется ждать ответа до конца дней Вселенной. Как-то неудобно совсем.

Но это неудобство решается тремя крупными прорывами, которые позволяют современным компьютерным моделям весьма точно оценивать реальность и не тратить на это миллиарды лет.

Сначала Пьер Хоэнберг, Уолтер Кон и Лу Чью Шам перевернули эту проблему взаимодействия с ног на голову в 1960-х годах, существенно упростив и улучшив теорию за счет аппроксимации. Они показали, что электронная плотность — квантовомеханическая вероятность, которую относительно несложно рассчитать — это все, что вам нужно, чтобы определить все свойства квантовой системы.

Выходит, что для трех молекул воды нам нужно всего 3000 фрагментов данных и около 100 миллиардов математических операций.

Затем, в 1970-х, Джон Попл и его коллеги нашли весьма разумный способ упрощать метод расчета, используя математические и вычислительные сокращения. Число фрагментов данных для трех молекул воды сократилось до 300. Расчеты — до 100 миллионов операций. Суперкомпьютеру 1975 года на такой расчет понадобилось бы две секунды, но современный телефон может сделать это в 500 раз быстрее.

Наконец, в 1990-х годах группа ученых придумала несколько простых методов аппроксимации очень сложных физических взаимодействий с удивительно высокой точностью.

Современные компьютерные модели работают быстро и точности, практически всегда и во всех случаях.

Квантово-механическое моделирование набирает обороты

Компьютерное моделирование преобразует химию. Быстрый взгляд на любой химический журнал из недавно вышедших показывает, насколько много экспериментальных работ нынче включают результаты моделирования.

Теория функционала плотности (DFT) — это техническое название самого распространенного метода моделирования — упоминается в 15 000 научных работ, опубликованных в 2015 году. Ее влияние будет только расти по мере улучшения компьютеров и теории.

Моделирование сегодня используется для выявления химических механизмов, выявления подробной информации о системах, которая скрыта от экспериментов, и предложения новых материалов, которые впоследствии могут быть сделаны в лаборатории.

Среди особенно интересных примеров можно отметить, что компьютеры смогли предсказать, что молекула C3H+ (пропинилидин) была ответственна за ряд странных астрономических наблюдений. На Земле C3H+ никогда не наблюдали. Когда позднее молекулу создали в лаборатории, ее поведение было в точности как показывало моделирование.

Новые проблемы требуют новых решений

Все это прекрасно, но развитие графена выявляет серьезный недостаток у существующих моделей. Графен и подобные двумерные материалы не складываются, как большинство химических веществ. Вместо этого они удерживаются силами Ван-дер-Ваальса, которые не включаются в стандартные модели. Неудивительно, что эта брешь привела к всплеску интереса в компьютерном моделировании сил Ван-дер-Ваальса.

К примеру, один международный проект был посвящен использованию сложного моделирования для определения энергии, полученной в процессе формирования графита из слоев графена. Эту энергию до сих пор не смогли определить экспериментально. Или вот: двумерные материалы можно складывать как LEGO, что весьма впечатляет с технологической точки зрения. Но есть практически бесконечное число способов упорядочить эти стеки. Недавно была разработана быстрая и надежная модель, используя которую компьютер может прочесывать большие количества различных порядков в поисках лучшего для определенной задачи. В реальной лаборатории это было бы невозможно.

На другом фронте, перенос электрического заряда в солнечных элементах также сложно исследовать с существующими методами, а значит, эти модели не особенно работают в таком важном поле, как зеленые технологии.

Что еще хуже, многообещающие (но опасные) перовскитные солнечные ячейки на основе свинца включают силы Ван-дер-Ваальса и перенос заряда одновременно. Исследователи пытаются решить этот вопрос изо всех сил, но из него также вытекают проблемы магнетизма и проводимости.

Хуже точно не будет

Конечная цель компьютерного моделирования — заменить эксперименты практически полностью. Тогда мы сможем создавать эксперименты на компьютере точно так же, как люди создают объекты в Minecraft. Этой конечной цели почти удалось достичь в 1990-х годах, если бы экспериментаторы не пришли к графену и перовскитам, которые показали недостатки в существующих теориях. Возможно, 2020-е годы будут последним десятилетием, когда эксперименты будут проводиться исключительно на компьютерах. Ради такой модели стоит работать.

Новости партнеров
Биткоин готовится к новому ралли: аналитики сравнили состояние крипторынка с дном 2022 года
Биткоин готовится к новому ралли: аналитики сравнили состояние крипторынка с дном 2022 года
Google оштрафуют за очередной сбор данных без разрешения пользователей
Google оштрафуют за очередной сбор данных без разрешения пользователей
Эти функции подписки Алиса Про стали бесплатными для всех. Проверь у себя и забудь про ChatGPT
Эти функции подписки Алиса Про стали бесплатными для всех. Проверь у себя и забудь про ChatGPT