Теперь мы можем предсказать, когда нейтронная звезда родит черную дыру

Нейтронная звезда — это одна из самых мощных, загадочных и, если честно, страшных вещей во Вселенной. Состоящая из нейтронов чуть менее, чем полностью, без чистого электрического заряда, она является заключительным этапом в жизненном цикле гигантской звезды, рожденной в огненных взрывах сверхновых. Они также представляют собой одни из самых плотных объектов во Вселенной, что зачастую приводит к тому, что они становятся черными дырами.


Короче говоря, они не смогли определить, какая масса необходима вращающейся нейтронной звезде, чтобы превзойти максимальную скорость вращения и сформировать новую черную дыру.

«Отчего в прошлом было сложно рассчитать M_max, — объясняет Рецолла, — так это оттого, что ее значение отличалось в зависимости от того, что составляет нейтронную звезду, а этого мы действительно не знаем. Вещество нейтронной звезды настолько отличается от того, что мы знаем, что мы можем лишь предполагать; к сожалению, предположений тоже очень много. Так что получались разные значения».

Но в своем исследовании под названием «Максимальная масса, момент инерции и компактность релятивистских звезд», которое появилось в ежемесячных заметках Королевского астрономического общества, Рецолла и Козима Брю из Университета Гете утверждают, что теперь стало возможным вывести максимальную массу быстро вращающейся звезды.

В своем исследовании Рецолла и Брю опирались на недавнюю работу астрономов, которые показали, что можно выразить свойства звездных равновесных конфигураций, которые не зависят от конкретного уравнения состояния их массы. Короче говоря, эти исследования показали, что могут быть «универсальные уравнения», если говорить о равновесии звезд.

В результате они смогли показать, что можно предсказать максимальную массу быстро вращающейся нейтронной звезды, просто принимая во внимание максимальную массу нейтронной звезды в соответствующей невращающейся конфигурации. Однако даже с учетом доступных данных, отмечает Рецолла, нужен был свежий взгляд:

«Универсальные отношения просто утверждают, что объекты, которые очевидно отличаются, имеют много общего. К примеру, хотя мы отличаемся от других млекопитающих, скажем, свиней, наш геном имеет огромное количество общих черт, потому что мы синтезируем те же белки, дышим тем же воздухом и так далее. И значит, если мы поймем, как работает гемоглобин у одних млекопитающих, это можно применить к намного большему их числу. В случае с нейтронными звездами все указывает на то, что применимо универсальное отношение между M_max и M_TOV. Если точно, мы выяснили, что M_max = 1,203 +- 0,022 M_TOV».

Выводы ученых, вероятно, будут иметь интересные последствия для будущих астрономических исследований. Для начала знание максимальной массы нейтронной звезды будет полезно для анализа сигналов гравитационных волн, произведенных нейтронными звездами, что позволит астрономам извлекать информацию из этого уравнения состояния до того, как объект коллапсирует в черную дыру.

Кроме того, это будет полезно для определения момента инерции нейтронных звезд, то есть для выяснения массы, необходимой для начала вращения звезды. Ученые смогут с большей точностью знать, когда нейтронная звезда начинает вращаться, и с большей точностью прогнозировать, останется ли она вращаться или коллапсирует в черную дыру. Прогнозировать место появления черных дыр — весьма полезная затея. Можно считать это еще одним шагом к пониманию того, как работает наша загадочная и грандиозная Вселенная.