Каким бы прочным и долговечным ни был материал, он при любом раскладе подвержен износу. И было бы здорово создать вещество, которое могло бы перестраивать свою внутреннюю структуру и менять ее на манер «умных» материалов из фантастических фильмов. И, похоже, что нечто подобное удалось создать группе ученых из американской Национальной лаборатории Ок-Ридж.
В настоящее время самым тяжелым элементом периодической таблицы является оганессон с атомной массой 294. Он получил официальное название в 2016 году. Как и каждый элемент периодической таблицы, оганессон всю свою массу получает от протонов и нейтронов (типов барионов), которые сами состоят из трех кварков каждый. Важная деталь всей известной барионной материи в том, что ее кварки так крепко держатся за счет сильной силы, что их нельзя разделить. Частицы, созданные связанными кварками (вроде протона и нейтрона), называются адронами, соответственно и барионная материя, ими образованная, называется адронной.
Конечно, некоторые роботы бегают быстрее людей и могут дольше держаться под водой, не нуждаясь в дыхании. Но у них нет наших органов чувств и осязать они не умеют. По крайней мере, не умели до этого момента. Инженеры из EPFL в Швейцарии недавно опубликовали работу в Advance Materials, в которой рассказали о новых ультратонких и гибких проводках, оснащенных электродами. Они вполне могут лечь в основу нервной системы будущего у роботов.
Бумагу человечество использует уже несколько тысяч лет, и за это время она нашла огромное применение во всех сферах нашей жизни. Но ученые всегда пытаются посмотреть на известные предметы под новым углом. Как сообщает издание EurekAlert!, группа исследователей, используя обычную целлюлозу, сумела создать материал, который по своим свойствам прочнее многих металлических сплавов.
Вы встречаете конец длинного дня в своей квартире в начале 2040-х годов. Вы хорошо поработали и решаете передохнуть. «Время фильмов!», говорите вы. Дом отвечает на ваши позывы. Стол распадается на сотни крошечных частей, которые заползают под вас и принимают форму кресла. Экран компьютера, за которым вы работали, растекается по стене и превращается в плоскую проекцию. Вы расслабляетесь в кресле и через несколько секунд уже смотрите фильм в домашнем кинотеатре, все в тех же четырех стенах. Кому нужно больше одной комнаты? Это мечта работающих над «программируемой материей».
Как вы думаете, что поможет человечеству в будущем победить множество болезней? Антибиотики? Редактирование генома? Медицинские микроботы? Исследователи из Университета Пердью считают, что таким материалом будет шелк, особую модификацию которого они сейчас как раз разрабатывают. По заявлениям ученых, использовать их шелк можно будет для дезинфекции ран, при протезировании и даже для замены сухожилий.
Армейская броня служит верой и правдой, спасая жизни солдат уже не один год. Но военные эксперты всегда стремятся к совершенствованию своих технологий. К примеру, недавно ученые из университета Северной Каролины вместе со своими коллегами из Управления прикладных технологий ВВС США разработали композитную пену из нержавеющей стали. В ходе испытаний выяснилось, что новый состав имеет гораздо лучшие защитные свойства, чем традиционная броня.
Графен — чрезвычайно тонкая и прочная структура, состоящая из слова атомов углерода. Кроме этого, графен является отличным проводником тепла и электричества, а также обладает антибактериальными свойствами. В последнее время мы всё чаще публикуем новости о том, в каких новых сферах науки и нашей жизни может применяться графен, однако сотрудникам Лаборатории Джеймса Тура из Университета Райса определённо удалось удивить всех своих коллег. Они продемонстрировали технологию нанесения съедобных графеновых RFID-меток на продукты питания.
Титановые сплавы, пожалуй, одни из самых прочных материалов на нашей планете. Но у них есть два крайне неприятных недостатка: они очень тяжёлые и очень дорогие. Учёные из Университета штата Мэриленд (UMD) придумали альтернативу дорогим металлам, которую можно буквально «выращивать на деревьях». Используя инновационный процесс уплотнения, команде исследователей удалось создать невероятно прочную древесину, обладающую прочностью металлов.
В сентябре 2015 года мировые лидеры собрались на историческом саммите ООН, чтобы принять цели в области устойчивого развития (SDG). Семнадцать этих амбициозных целей и индикаторов помогут направить и скоординировать правительства и международные организации для решения глобальных проблем. Например, SDG 3 предусматривает «обеспечение здорового образа жизни и доступного благополучия для всех людей в любом возрасте». Другие включают доступ к чистой воде, уменьшение последствий изменений климата и доступное здравоохранение.
Команда исследователей из Технологического института Джорджии с помощью процесса электрохимического травления создала на поверхности сплава из нержавеющей стали наноструктурированное покрытие (текстура из крошечных выступающих шипов), убивающее бактерии, при этом не нанося вреда клеткам млекопитающих. Если испытания данной технологии подтвердят её эффективность, не исключено, что подобным покрытием в будущем будут защищать медицинские приборы, а также оборудование для пищевой промышленности.
Только представьте себе одежду, которая в зависимости от условий окружающей среды способна и согревать человека, спасая от холода, и охлаждать, в случае, если на улице очень жарко. Но одежду эту сложно представить без правильной ткани, а именно такую ткань создали учёные из Стэнфордского университета. Двусторонний нанопористый полиэтилен с углеродным слоем и медным напылением посередине открывает перед производителями одежды широчайшие возможности.
Уже не первый год существуют различные материалы, меняющие свою форму под воздействием разных факторов. К примеру, никого не удивишь материалами с памятью формы, которые могут «запоминать» свою конфигурацию. А вот ученым из университета Северной Каролины, как сообщает издание New Atlas, удалось пойти дальше и разработать технологию, которая позволяет при помощи света заставить плоский материал изменять свою форму с достаточно высокой точностью.
Графен без всяких преувеличений можно назвать «материалом будущего». То и дело мы слышим, как исследователи из разных стран находят для себя новые свойства графена, открывающие перед человечеством огромное количество потрясающих возможностей. Материал представляет собой двумерную модификацию углерода толщиной всего в один атом, обладающую большой механической жёсткостью и рекордно большой теплопроводностью. Производство графена – процесс очень недешёвый. Однако исследователям из Канзасского государственного университета удалось создать бюджетный способ производства этого удивительного вещества.
Супер-герой Росомаха из популярной серии комиксов «Люди Икс» не только обладает недюжинной силой и рядом полезных умений. Ещё он может восстанавливать повреждения своего тела — любые раны на нём быстро заживают, а сам он сразу же приходит в хорошую физическую форму. Именно этот персонаж вдохновил учёных, разработавших новый эластичный и самовосстанавливающийся материал. По заверениям изобретателей, он отлично подойдёт для создания искусственных мышц для роботов.
Эксперименты с использованием лазерного света и кусочков серого материала размером с кончик ногтя могут предложить подсказки к фундаментальной научной загадке: какая связь между повседневным миром классической физики и скрытым квантовым миром, который подчиняется совершенно другим правилам? «Мы обнаружили конкретный материал, который находится между этими двумя режимами», говорит Питер Армитаж, доцент физики в Университете Джона Хопкинса, опубликовавший свою работу в журнале Nature. Шесть ученых из Джона Хопкинса и Университета Рутгерса работали над материалами под названием топологические изоляторы, которые могут проводить электричество на своей поверхности толщиной в атом, но не внутри.
Грибы можно не только есть, некоторые используют в сельскохозяйственной промышленности, часть подходит для изготовления красителей, съедобной упаковки для продуктов питания, мебели и в декоративных целях. Стартап MycoWorks пошёл дальше и начал производство качественного и прочного материала, основным сырьём для которого тоже выступают грибы, точнее грибницы трутовика, из неё же делают отличный кожзаменитель.
Гусеница тутового шелкопряда в течение 26-32 дней питается исключительно листьями дерева шелковицы, после чего сплетает для себя кокон из непрерывной шёлковой нити длиной от 300 до 1500 метров. Эти белые коконы активно используются в текстильной промышленности для производства шёлка. Толщина шёлкового волокна составляет всего 20-30 микрометров, а разрывное напряжение – около 40 кгс/мм². Не так давно китайским учёным удалось в ходе необычного эксперимента получить куда более прочную шёлковую нить с необычными свойствами, способную заинтересовать даже Спайдермена.
Англичане Дэвид Таулесс, Дункан Холдейн и Майкл Костерлиц были удостоены Нобелевской премии по физике в этом году, во вторник, за работу, которая «раскрыла секреты экзотической материи», как заявил призовой комитет. Эта троица «открыла дверь» в неизвестный мир, в котором вещество принимает необычные состояния или фазы, сообщила Королевская академия наук Швеции. Престижная премия в этом году была присуждена за «теоретические открытия топологических фазовых переходов и топологических фаз материи».
Сверхпроводники — это Святой Грааль физиков и материаловедов. Эти материалы позволяют электрическому току течь совершенно свободно, безо всякого сопротивления. Правда, такое возможно лишь при температурах в несколько градусов выше абсолютного нуля, что затрудняет их повсеместное использование. Тем не менее, если бы мы могли использовать силу сверхпроводимости при комнатной температуре, мы могли бы изменить процессы производства, хранения, распределения энергии, и фантастика стала бы реальностью.