Все металлы обладают дефектами структуры, которые в конечном итоге сказываются на их прочности – чем больше дефектов в металле, тем он более мягкий или ломкий. Для решения этой проблемы ученые создают новые металлические сплавы. Такой подход позволяет получать более прочные металлические соединения, но в то же время приводит к потере показателя их электропроводности. А это в свою очередь ограничивает возможности использования новых сплавов в различных задачах. Последнее открытие американских ученых предлагает решение этого вопроса. Об открытии сообщается в статье, опубликованной журналом Nature Materials.
Ученые давно предполагали, что в центре газовых гигантов (планет, не имеющих твердой поверхности и состоящих в значительной мере из водорода и других газов) законы физики материалов работают совсем не так, как это происходит на других планетах. В подобных условиях, находящийся под огромным давлением водород сжимается настолько, что в буквальном смысле становится металлом. Многие годы исследователи искали возможность создать металлический водород в лабораторных условиях ради его уникальных свойств, которые могли бы пригодиться во многих областях человеческой деятельности.
Вселенная по-разному уничтожает что-либо. Если вы попытаетесь задержать дыхание в космосе, ваши легкие взорвутся; если вместо этого вы вдохнете каждую молекулу воздуха, вы потеряете сознание. В некоторых местах вы замерзнете, лишившись последнего тепла своего тела; в других будет настолько жарко, что атомы вашего тела превратятся в плазму. Но из всех способов, которыми Вселенная избавляется от объектов, самый увлекательный — отправить его в черную дыру.
Совсем недавно группа ученых определила, что некоторые квантовые частицы могут регенерировать после своего распада. Это открытие очень важно для будущего человечества, квантовых вычислений и межгалактических граффити. Физики-теоретики из Технического университета Мюнхена и Института Макса Планка провели эксперименты по моделированию, чтобы определить, что некоторые квазичастицы по своей сути бессмертны. Да, согласно второму закону термодинамики, ничто не длится вечно, но эти квантовые частицы могут восстанавливаться после распада — подобно фениксу из греческой мифологии.
Ученые из Национальной лаборатории высокого магнитного поля (MagLab) при Университете штата Флорида (США) создали самый мощный в мире сверхпроводящий магнит. Устройство диаметром не больше сантиметра и размером не больше ролика для туалетной бумаги (не знаю почему, но создатели проводят именно такую аналогию) способно генерировать рекордную напряженность магнитного поля в 45,5 тесла. Это более чем в 20 раз мощнее магнитов больничных аппаратов магнитно-резонансной томографии. Отмечается, что ранее только импульсные магниты, способные поддерживать магнитное поле в течение доли секунды, достигали более высокой интенсивности.
С самого рождения космической эпохи мечта о поездке в другую солнечную системы удерживалась в «ракетной узде», которая жестко ограничивает скорость и размеры космического корабля, который мы запускаем в космос. По оценкам ученых, даже при использовании самых мощных ракетных двигателей сегодня потребуется около 50 000 лет, чтобы достичь нашего ближайшего межзвездного соседа — Альфы Центавра. Если люди когда-либо надеются увидеть восход инопланетного солнца, время транзита должно существенно сократиться.
В последних сериях сериала «Чернобыль» телекомпании HBO российские ученые открывают правду на причину произошедшего взрыва реактора 4-го энергоблока Чернобыльской АЭС, «опылившим» впоследствии радиоактивным цезием территории 17 стран Европы общей площадью 207,5 тысяч квадратных километров. Катастрофа на Чернобыльской АЭС выявила фундаментальные недостатки в реакторе РБМК-1000. Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России. Безопасны ли они? По словам западных экспертов в ядерной физике, которые поделились своим мнением с порталом Live Science, этот вопрос остается открытым.
Не успели утихнуть страсти по поводу удачности/неудачности завершения девятилетнего эпического фэнтези «Игра престолов», как американский телеканал HBO совместно с британским Sky обрушили на зрителя новую «бомбу» в виде пятисерийного мини-сериала «Чернобыль», снятого на основе реальных событий, повествующих об одной из самых ужасающих ядерных катастроф в истории человечества – взрыва реактора четвертого энергоблока Чернобыльной АЭС, произошедшего в ночь с 25 на 26 апреля 1986 года. По этой теме на сегодня написаны десятки книг, огромное количество статей и докладов со слов очевидцев и участников событий. Знакомство с первой серией действительно не оставляет сомнений: со значительной частью этого материала авторы сериала ознакомились.
Потратив годы на исследования и эксперименты и вложив немалое количество денег в это предприятие компания Google так и не никаких доказательств, что ядерный синтез можно осуществить при комнатной температуре. Тем не менее, инвестиции в размере 10 миллионов долларов не пропали даром, пишет портал Futurism. О своих изысканиях и их результатах компания сообщает в статье, опубликованной на этой неделе в журнале Nature.
Созданный в лаборатории аналог черной дыры предоставил новое косвенное доказательство того, что эти таинственные космические объекты действительно излучают газовые потоки заряженных частиц, сообщает портал Science Alert, ссылающийся на новое научное исследование, опубликованное в журнале Nature. Физики утверждают, что созданный ими аналог черной дыры обладает температурой, которая является необходимой предпосылкой для одноименного излучения, предсказанного Стивеном Хокингом.
Римские амфтеатры находятся среди самых древних человеческих сооружений на Земле. Эти структуры удивительно хорошо сохранились в разных местах по всей древней Римской империи. Это особенно примечательно, поскольку значительная часть этой территории сейсмически активна: она расположена на тектонической границе Евразийской и Африканской плит и пережила многочисленные землетрясения, которые разрушили другие типы зданий. Как амфитеатры пережили эти 2000 лет — вот в чем вопрос.
Черные дыры захватывают все, с чем сталкиваются. От субатомных частиц до звезд, твердых тел, газов, жидкостей и даже света — все, что в них падает, пропадает. И точно так же черные дыры захватывают популярное воображение. Размышления о космосе с тех пор, как люди впервые увидели точки света, украшающие ночное небо, заставляют ум воображать вещи, которые невозможно увидеть здесь, на Земле. И черные дыры расширяют воображение больше, чем любое другое чудо астрономии.
Ни в одной области наук нет такой большой пропасти между признанием и важностью, как в метрологии. И дело не в погоде. Метрология — это наука об измерениях. У нее более длинная история, чем у современных наук, преподаваемых в школе, и это важно для всей полезности и силы науки. Без звуковой метрологии не было бы полетов на Луну, современной медицины, самоуправляемых автомобилей, аналитики бейсбола и прогнозов погоды (хороших, во всяком случае).
В 2019 году это обычная эмоция — желать по четыре-пять раз на дню отправиться не то, чтобы в космос, но на самый край света, как можно дальше, чтобы избавиться от дурного наваждения или плохой погоды, задерживающегося поезда или тесных брюк, таких заурядных на Земле вещей. Но что будет ждать вас на этой космологической границе? Что это вообще такое — край света, край Вселенной — что мы там увидим? Это граница или бесконечность вообще?
Недавно в Лаборатории лазерной энергетики в Брайтоне, штат Нью-Йорк, один из самых мощных лазеров в мире ударил в каплю воды, создав ударную волну, которая подняла давление в этой воде до миллионов атмосфер, а температуру — до тысяч градусов. Рентгеновские лучи, которые прошли через эту каплю в ту же долю секунды, явили человечеству первый проблеск воды в таких экстремальных условиях. Они показали, что вода внутри ударной волны не стала перегретой жидкостью или газом. Нет, вода замерзла.
«Я провела много времени в темноте в аспирантуре. Не только потому, что я изучала область квантовой оптики — где мы обычно имеем дело с одной частицей света, или фотоном, одновременно. Но и потому, что в моих исследованиях инструментом измерений были глаза. Я изучала, как люди воспринимают мельчайшие количества света, и сама становилась первой испытуемой всякий раз», — рассказывает Ребекка Холмс, физик Национальной лаборатории Лос-Аламоса. Ее работа, о которой вы сейчас прочитаете, была опубликована Physics World and Applied Optics, среди прочих мест. Далее — от первого лица.
Теперь, когда ученые нашли бозон Хиггса, Большой адронный коллайдер будет искать еще более неуловимую цель: темную материю. Нас окружают темная материя и темная энергия — невидимые субстанции, которые связывают галактики, но никак себя не выдают. В новой работе излагается инновационный метод поиска темной материи силами Большого адронного коллайдера за счет эксплуатации относительно медленной скорости потенциальной частицы.
Мы всегда в поисках чего-то большего. И даже наши лучшие догадки зачастую не позволяют нам понять, где мы его найдем. В 19 веке мы спорили о том, за счет чего горит Солнце — гравитации или сгорания, даже не подозревая, что в деле замешан термоядерный синтез. В 20 веке мы спорили о судьбе Вселенной, даже не предполагая, что она разгоняется в небытие. Но революции в науке реальны, и когда они происходят, нам приходится пересматривать множество всякого — порой даже все — что раньше считалось верным.
Идея черных дыр восходит к 1783 году, когда кембриджский ученый Джон Мичелл осознал, что достаточно массивный объект в достаточно маленьком пространстве может притягивать даже свет, не давая ему вырваться. Спустя более века Карл Шварцшильд нашел точное решение для общей теории относительности Эйнштейна, которое предсказало такой же результат: черную дыру. Как Мичелл, так и Шварцшильд предсказали явную связь между горизонтом событий, или радиусом области, из которой свет не может вырваться, и массой черной дыры.
После того, как в 2021 году ускоритель заряженных частиц Большой адронный коллайдер (БАК) вновь будет запущен после обновления и сможет снова сталкивать частицы друг с другом, ученые надеются, с помощью него наконец открыть неуловимую темную материю. Физики не одно десятилетие тщетно пытаются обнаружить частицы темной материи, на которые приходится основная масса нашей Вселенной. Однако теперь у исследователей появилась новая цель в этих поисках: относительно тяжелая и долгоживущая частица, которую можно получить в результате высокоэнергетических столкновений на БАК.