В 2012 году Стивену Хокингу исполнилось 70 лет, с тех пор прошло три года. Хокинг — яркий пример того, что когда врачи предрекают скорую кончину, нужно собраться и жить дальше. Таким образом, ему удалось победить свой диагноз почти на полвека, отложив на этот же срок фатальный исход. Об этом человеке и о его знаменитом голосе мы писали много. Недавно вышел фильм про него, а за главную роль Эдди Редмейн получил Оскар.
Вы, наверное, слышали о так называемом эффекте Казимира в научно-фантастическом фильме, но было ли вам известно, что энергию пустого пространства можно в теории использовать для исследования Вселенной? Эффект Казимира описывает, что в пустом пространстве есть энергия, которая может воздействовать на физические объекты. Ученые разрабатывают способы применения этой концепции в самых разных областях, от освоения космоса до нанотехнологий. Правильно используемое «пустое пространство» Вселенной может быть использовано для ускорения космических кораблей в регионы, в настоящее время неизведанные человеком.
Новое применение старого инструмента позволило ученым использовать свет для изучения и управления материей с разрешением и точностью, в 1000 раз превышающими ранее возможные. Физики Мичиганского университета продемонстрировали «пондеромоторную спектроскопию», продвинутую форму этой техники, которая родилась в 15 веке, когда Исаак Ньютон впервые показал, что белый свет, проходя через призму, разбивается на радугу.
Наблюдая за галактикой Млечный Путь, мы узнали, что на каждый кубический метр пространства, даже тот, который занят вашим стулом, есть небольшое количество материи — примерно в 50 масс протона, — проходящей через него в каждый отдельно взятый момент времени. Но в отличие от частиц, которые составляют вас и ваш стул, эта материя не взаимодействует с миром. Она не отражает свет, не излучается твердыми объектами, проходит сквозь стены. Эта загадочная субстанция получила название «темная материя».
Однажды осенним утром в 2009 году команда из трех физиков сгрудилась вокруг экрана компьютера в небольшом офисе с видом на Бродвей в Нью-Йорке. Они надели самую красивую одежду — даже аспиранты были с запонками — и приготовили бутылку шампанского. Одним щелчком мышки они надеялись разоблачить фундаментальную частицу, которая ускользала от физиков десятки лет: бозон Хиггса.
Скорость света не меняется. Она постоянна, не так ли? А вот и нет! Ученые из двух университетов в Шотландии смогли замедлить свет, проходящий сквозь безвоздушное пространство.
На протяжении почти полувека физики-теоретики сделали ряд весьма интересных открытий: определенные константы в основе физики, похоже, необычайно тонко настроены, специально для того, чтобы во Вселенной могла возникнуть жизнь. Эти константы лежат в Стандартной модели элементарных частиц, они отвечали за образование ядер водорода в процессе Большого Взрыва и за изначальное слияние атомов углерода и кислорода в центрах первых массивных звезд, которые взорвались как сверхновые. Эти процессы, в свою очередь, подготовили почву для солнечных систем и планет, способных поддерживать жизнь с углеродной основой, зависимой от воды и кислорода.
Если и можно с уверенностью отметить важные открытия этого года, открывающие 2015 год, то это — точно оно. Около месяца назад исследователи из Columbia Engineering и Технологического института Джорджии сообщили о первом экспериментальном наблюдении пьезоэлектрического и пьезотронического эффектов в атомарно-тонком материале, дисульфиде молибдена (MoS2). Результатом может стать уникальный электрогенератор механочувствительное устройство, которое будет оптически прозрачным, очень легким, гибким и растягивающимся.
Приятный сюрприз: квантовая физика менее сложна, чем кажется. Международная команда ученых доказала, что две своеобразных особенности квантового мира, которые ранее считались разными, оказались различными проявлениями одного и того же. Результаты работы были опубликованы 19 декабря в Nature Communications.
На протяжении почти тридцати лет поиск сверхпроводников, работающих при комнатной температуре, велся в области экзотических материалов — купратов — которые могут переносить токи без потерь энергии в виде тепла при температурах до -109 градусов по Цельсию. Однако ученые утверждают, что повторили этот рекорд с использованием молекулы сероводорода. Когда они подвергли крошечный образец этого материала давлению, похожему на то, что встречается в ядре Земли, он стал сверхпроводящим при температуре -83 градуса по Цельсию.
Большой адронный коллайдер (БАК) находится в процессе перезагрузки перед своим вторым 3-летним периодом работы, в который он удвоит энергию столкновений и отправится на поиски новой физики, которая, как мы надеемся, решит несколько загадок современной физики на этом пути.
Аномалия, обнаруженная на Большом адронном коллайдере, побудила ученых пересмотреть математическое описание связанной с экспериментами физики. Изучая две силы, которые отличаются в повседневной жизни, но объединяются при экстремальных условиях в коллайдере (напоминающих условия после рождения Вселенной), они упростили одно из описаний взаимодействий элементарных частиц. Новый подход позволяет сделать особые предсказания событий будущих экспериментов БАК и других коллайдеров, которые помогут выявить «новую физику» и частицы или процессы, которые еще только предстоит открыть.
В последнее время мы часто обращаемся к концепции мультивселенной (мультиверса, множественной вселенной), поэтому стоит освежить в памяти ее основные пункты. Представьте, что вы — это вы, но вместо того, чтобы скушать яблоко или печенье сегодня на завтрак, вы поели пиццы. Или представьте, что вы — это не вы, потому что протоны работают не так, как там, где вы, и атомы не сформировались, и вся Вселенная мертва. Или представьте что угодно, потому что когда мы говорим о множественных вселенных, мы допускаем бесконечное число возможностей. Это хорошая идея, но она часто подвергается критике со стороны физиков-скептиков.
Любой ученый, если вы его спросите, скажет, что мы не можем видеть инфракрасный свет. Как и рентгеновские лучи и радиоволны, инфракрасные световые волны находятся за пределами видимого спектра. Однако международная команда ученых из Вашингтонского университета обнаружила, что при определенных условиях сетчатка глаза может ощутить инфракрасный свет.
Мы все слышали о плащах-невидимках, которые в теории могут прятать объекты от взгляда. Но команда ученых из Университета Пердью создала плащ времени, который может прятать события.
Физический реализм — это взгляд, согласно которому физический мир, который мы видим, реален и существует сам по себе. Большинство людей думают, что это само собой разумеется, но с некоторых пор физическому реализму серьезно противоречат некоторые факты из мира физики. Парадоксы, которые сбивали с толку физиков прошлого века, до сих пор не разрешены, и многообещающие теории струн и суперсимметрии никуда этот воз пока не привезли.
Невидимость — как и путешествие во времени, телепортация, левитация и сверхскорость — является предметом обсуждения научной фантастики с самого ее появления. Среди самых известных примеров — та невидимость, которую использовали ромуланцы в «Звездном пути», Гарри Поттер с помощью плаща и Фродо, чтобы пробраться в Мордор. Сотни, если не тысячи упоминаний невидимости встречаются в книгах и фильмах. На протяжении многих лет ученые придумывали интересные способы, чтобы скрыть объекты из поля зрения, только вот процесс в этих случаях был куда сложнее, чем демонстрирует научная фантастика.
Пространство-время. Одно из самых интересных и волнующих составных существительных. Мысли об Эйнштейне, об относительности, о сложных физических законах выводят нас, обычных людей, за рамки привычных вещей. Это слово выводит время из состояния абстракции и помещает в один ряд с тремя другими измерениями, которые мы видим вокруг. Другие измерения могут существовать, но у нас нет слов для того, чтобы их описать. Только математика.
Что, если временную часть в уравнении пространственно-временного континуума буквально исключить? Одно из последних исследований, возможно, свидетельствует о том, что время медленно и постепенно исчезает из нашей Вселенной и в один прекрасный день испарится совсем. Новая радикальная теория может объяснить космологическую загадку, которая морочила голову ученым в течение многих лет.
Мы не можем остановить время. Даже в пробке, когда время, кажется, замирает и останавливается. Экономия света в дневное время тоже не помогает, время неизбежно стремится вперед. Почему не назад? Почему мы помним прошлое, а не будущее? Физики считают, что ответ на этот глубокий и сложный вопрос может скрываться в хорошо знакомой нам всем гравитации.