Людей всегда увлекали две основные теории о происхождении Вселенной. «В одной из них Вселенная возникает в едином моменте творения (как в иудеохристианской и бразильской космогонии)», писали космологи Марио Новелло и Сантьяго Перес-Берглиффа в 2008 году. В другой — «Вселенная вечна и состоит из бесконечной серии циклов (как в космогонии вавилонян и египтян)». Разделение в современной космологии «каким-то образом эхом вторит космогоническим мифам», писали космологи.
Если вы думали, что все ограничивается тем, что мы нашли за космическим горизонтом, готовьтесь передумать. «Трудно построить модели инфляции, которые не приводят к мультивселенной. Это не невозможно, поэтому я уверен в необходимости проведения дополнительных исследований. Но большинство моделей инфляции действительно ведут к мультивселенной, а доказательства инфляции будут подталкивать нас в направлении серьезного принятия [множественных вселенных]», — сказал однажды Алан Гут, американский физик и космолог, первым предложивший идею инфляции, или космического расширения.
Общепринятой научной моделью появления Вселенной по-прежнему является модель Большого взрыва. Попытки доказать ее несостоятельность и объяснить возникновение бытия с гораздо более простой точки зрения, конечно, были. Одними из последних, например, можно выделить работу Джеймса Хартла и Стивена Хокинга, предложивших модель «безграничной» Вселенной. Или, скажем, работы Александра Виленкина о «туннельной природе Вселенной». Однако новое исследование, проведенное совместно немецким Институтом гравитационной физики Макса Планка и канадским Институтом Периметра, показывает, что никакой убедительной альтернативы модели Большого взрыва нет. Пока.
В новом исследовании ученые Университета Британской Колумбии предположили, что Вселенная расширяется из-за флуктуаций пространства и времени. На текущий момент вокруг загадочной темной энергии сгрудилось много перепутанных теорий. Новое исследование может привести к лучшему пониманию темной энергии. С конца 1920-х годов астрономы знали о том, что Вселенная находится в состоянии расширения. Первоначально предсказанная общей теорией относительности Эйнштейна, эта парадигма привела к самой широкой принятой космологической модели — теории Большого Взрыва. Однако в 90-х годах ситуация стала несколько запутанной, поскольку новейшие наблюдения показали, что Вселенная расширяется с постоянно нарастающей скоростью.
Если в чистую безлунную ночь отправиться подальше за город и посмотреть на небо, можно увидеть около трех тысяч мерцающих точек. С детства нас учат, что если она не мерцает, то это планета. Если движется — то это спутник или метеорит. За этой крошечной россыпью прячутся гигантские звезды за много миллиардов километров от нас, некоторые из которых в десятки и сотни раз больше нашего Солнца. Наш родной газовый шар класса G2V тоже представляет вселенское сообщество светил. Ученые оценивают его возраст в 4,5 миллиарда лет. Но Солнечная система считается относительно молодой. Где же прячутся самые древние звезды?
Давным-давно физики идентифицировали и категоризировали компоненты видимой Вселенной. До недавних пор 16 частиц составляли все в известном нам мире. Но теперь, благодаря усилиям физиков, работающих в CERN с Большим адронным коллайдером, мы добавили другую частицу, бозон Хиггса, в Стандартную модель физики. Тем не менее существует целый скрытый — или темный — аспект физики и нашего природного мира, который Стандартная модель не может объяснить даже в присутствии бозона Хиггса. Говоря откровенно, всей видимой материи недостаточно, чтобы объяснить то поведение Вселенной, которое мы наблюдаем.
Наша Вселенная началась с Большого Взрыва, но это не означает, что мы правильно ее себе нарисовали. Большинство из нас представляют это как настоящий взрыв: когда все начинается с горячего и плотного, а потом остывает и охлаждается, пока отдельные фрагменты разлетаются все дальше и дальше. Но это же вообще не соответствует действительности. Поэтому и рождается вопрос: а есть ли у Вселенной центр? Действительно ли космическое фоновое излучение одинаково удалено от нас, куда ни посмотри? Ведь если Вселенная расширяется, должно же это расширение было с чего-то начинаться?
Физикам-теоретикам и космологам приходится искать ответы на самые фундаментальные вопросы: «Почему мы здесь?», «Когда появилась Вселенная?» и «Как это произошло?» Однако несмотря на очевидную важность поиска ответов на эти вопросы, есть вопрос, который затмевает их всех своим интересом: «Что было до Большого взрыва?».
Современная наука склонна считать, что скорость света всегда была неизменной. Сейчас же ученые предполагают, что кажущаяся на первый взгляд постоянная константа могла со временем измениться, и они нашли способ проверить, верно ли это предположение. Метод, благодаря которому можно проверить изменения в скорости света, разработали профессора Жоао Магуехо и Ньяеш Афшорди из Имперского колледжа Лондона.
Задумываясь о том, что такое Вселенная, большинство людей представляют себе безграничные глубины космоса, ограниченные нашими возможностями наблюдения, и все, что когда-либо было или будет. Но даже с такой Вселенной, которая:
Вглядываясь в глубины космоса — в гигантскую бездну звезд, галактик и послесвечения самого Большого Взрыва — можно было бы подумать, что если человечество сможет понять законы природы и создать достаточно хорошую технологию, нет никаких ограничений тому, что мы можем исследовать. Если бы мы могли разработать технологию термоядерного синтеза, научиться сохранять антивещество или даже использовать темную материю для путешествий, мы открыли бы для себя межпланетные, межзвездные или даже межгалактические путешествия. Разгоняясь в течение нескольких месяцев, чтобы достичь околосветовых скоростей, мы даже могли бы добраться куда захотим за одну жизнь.
Ничто не вечно. И наша Вселенная, конечно, тоже умрет. Поговаривают, ее ждет вечное расширение и, в конце концов, смерть от энтропии. Вселенная увеличивается, и энтропия растет и будет расти, пока все, что нам дорого, не умрет. Но это сантименты, а мы люди ученые, поэтому нам интересно, как будет выглядеть конец Вселенной? Чем он будет сопровождаться? Не, ну любопытно же.
Если вы спросите ученого, с чего, по его мнению, началась Вселенная, в большинстве случаев вы получите ответ: Большой Взрыв. Наша Вселенная, полная звезд, галактик и космических структур, разделенных гигантскими просторами пустого космоса, не всегда была такой и такой не родилась. Вселенная стала такой, расширившись и остыв из горячего, плотного, однородного состояния, в котором не было никаких галактик, звезд и даже атомов. Все существующее в нынешней форме не существовало 13,8 миллиарда лет назад, но узнали мы об этом лишь в последние 100 лет. Казалось бы, уже давно, но многие люди не знают о теории Большого Взрыва простейших вещей — и мы здесь, чтобы исправить это досадное недоразумение.
Есть что-то общее у начала нашей Вселенной, периода космической инфляции, и виновника ее конечной судьбы: ускоряющей расширение темной энергии, что не может не приводить к мысли о том, что они связаны. И вот вам вопрос: если гипотеза вечной инфляции верна, может ли темная энергия предшествовать возвращению в это изначальное состояние?
Бенджамин Франклин однажды сказал, что любой дурак может критиковать, осуждать и жаловаться — и большинство дураков так и делает. Ричард Фейнман однажды сказал о научном процессе: первый принцип заключается в том, чтобы не обманывать себя — а вас легче всего обмануть. Скептики считают, что ученые могут обманывать сами себя (то ли по незнанию, то ли чтобы сохранить свое рабочее место), и зачастую обвиняют их в этом — климатологов, космологов, кого угодно. В принципе, легко отмахнуться от такой критики как от необоснованной, но возникает интересный вопрос: как мы можем убедиться, что не обманываем себя?
Вселенная — чертовски большое место. Когда мы смотрим на ночное небо, почти все, что видно невооруженному глазу, является частью нашей галактики: звездой, скоплением звезд, туманностью. За звездами Млечного Пути проглядывает, например, галактика Треугольника. Эти «островные миры» мы находим повсюду во Вселенной, куда ни глянь, даже в самых темных и пустых клочках пространства, если только сумеем собрать достаточно света, чтобы заглянуть достаточно глубоко.
Один из самых главных вопросов о нашей Вселенной — это вопрос о том, откуда все пошло. Когда мы обнаружили, что гигантские спирали в небесах — это галактики, не особо отличающиеся от нашего Млечного Пути, мы впервые начали понимать масштабы воспринимаемого. Эти далекие «островки Вселенной» находятся не в Млечном Пути: это собрания миллиардов или триллионов звезд, разделенных миллионами или миллиардами световых лет в космосе.
Стандартная космология — то есть теория Большого Взрыва с ее ранним периодом экспоненциального роста, известного как инфляция — является преобладающей научной моделью нашей Вселенной, в которой совокупность пространства и времени раздулась из очень горячей и плотной точки в гомогенный и постоянно расширяющийся простор. Эта теория объясняет множество физических явлений, которые мы наблюдаем. Но что, если мы не все знаем о ней?
Терри Пратчетт описал традиционный взгляд на создание Вселенной примерно так: «В начале было ничего, которое взорвалось». Современная точка зрения космологии подразумевает, что расширяющаяся Вселенная возникла в результате Большого Взрыва, и она хорошо поддерживается доказательствами в виде реликтового излучения и смещением далекого света в направлении красной части спектра: Вселенная расширяется постоянно.
Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.