Почему современный ИИ — это тупиковая ветвь развития технологий

Под термином «искусственный интеллект» зачастую имеются в виду нейросети, построенные на технологии глубокого машинного обучения. Причем технология обучения нейросетей хорошо отработана и дает свои плоды. Однако не все ученые разделяют мнение о том, что искусственный интеллект должен развиваться именно по этому пути. Кто-то даже полагает, что таким системам «не стоит доверять» и ни к чему хорошему их развитие не приведет.

Искусственный интеллект в современном понимании — это совсем не то, что многие думают

Почему машинное обучение — это плохо для развития человечества

В масштабной работе, опубликованной на страницах издания Тechnologyreview, профессор Нью-Йоркского университета, специалист в области когнитивистики (науки о познании) Гэри Маркус рассказал, чем чревато повсеместное использование нейросетей на основе глубокого машинного обучения.

Во-первых, ученый считает, что у технологии есть явные ограничения. В частности, уже давно ведутся разговоры о том, что требуется создать, так называемый, «настоящий ИИ», который подойдет для решения широкого круга задач, а не какой-то одной конкретной, как происходит сейчас. Существующие ИИ-системы уже подошли к пику своего развития и им практически «некуда расти». К тому же нельзя просто взять и, скажем сначала научить один ИИ водить машину, а другой заставить чинить ее и затем объединить системы, создав универсального помощника. Искусственные интеллекты просто не смогут взаимодействовать, так как «учились по-разному».

Вы можете обучить ИИ играть на Atari лучше человека, но сделать хороший робомобиль — вряд ли. Хотя эта задача тоже довольно узкоспециализированная. Глубокое обучение хорошо проявляет себя в анализе больших данных, но алгоритмы не видят причинно-следственной связи и плохо воспринимают любую перемену условий. Сдвиньте элементы в компьютерной игре на два-три пикселя, и обученный ИИ станет неэффективным. Сделайте поле для игры в го не квадратным, а прямоугольным, и искусственный разум проиграет даже начинающему игроку.

Как сделать ИИ умнее

Для того, чтобы алгоритмы стали более эффективными, их нужно «обучать иначе». Необходимо сделать так, чтобы они начинали видеть взаимосвязь объектов и последствий от взаимодействия с ними. В данном случае лучшим примером послужим мы с вами.

Наберите студентов-стажеров, и они через несколько дней начнут работать над любой проблемой — от юриспруденции до медицины. Не потому, что все из них умные. А от того, что люди имеют общее представление об окружающем мире, а не частное.

Профессор Гэри Маркус

Причем то, что предлагает Маркус совсем не ново. Описанный выше пример — это то, как ученые представляли себе «классический ИИ». Только вот для того, чтобы такой ИИ эффективно работал, нам нужно заранее запрограммировать все возможные исходы. А это практически нереально. Но выход есть. Кстати, какой путь развития ИИ является предпочтительным по вашему мнению? Расскажите об этом в нашем чате в Телеграм.

Читайте также: Как работает искусственный интеллект

Решением может быть своего рода симбиоз «классического ИИ», который видит взаимосвязи и получает решения понятным образом, и глубокого обучения, способного находить вариант решения путем «проб и ошибок». Это может быть некая базовая система правил и предписаний, касающихся окружающего мира. На их основе ИИ-системы уже и смогут развивать себя в определенной области. Настоящий искусственный интеллект должен осознать, как работает все вокруг для того, чтобы понять причинно-следственные связи и легко переключиться с одной задачи на другую. Современные системы, созданные с помощью технологии глубокого обучения, на такое просто-напросто не способны.

Новости партнеров
Биткоин добрался до 108 тысяч долларов на фоне слабости доллара. Что происходит?
Биткоин добрался до 108 тысяч долларов на фоне слабости доллара. Что происходит?
Как сделать хайповое фото со звездой через ChatGPT и другие нейросети
Как сделать хайповое фото со звездой через ChatGPT и другие нейросети
Путеводитель по самым горячим Телеграм-каналам лета 2025: от мемов до экономики и спорта
Путеводитель по самым горячим Телеграм-каналам лета 2025: от мемов до экономики и спорта