Квантовая запутанность

Квантовая запутанность, или «жуткое действие на расстоянии», как ее называл Альберт Эйнштейн — это квантовомеханический феномен, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Эта зависимость сохраняется даже если объекты удалить друг от друга за много километров. Например, можно запутать пару фотонов, увести один из них в другую галактику, а потом измерить спин второго фотона — и он будет противоположен спину первого фотона, и наоборот. Квантовую запутанность пытаются приспособить для мгновенной передачи данных на гигантские расстояния или даже для телепортации.

Правда ли, что лето 2023 будет очень жарким в России и в мире?

Любовь Соковикова

Любите ли вы жару? Или напротив, держитесь подальше от Солнца? Вне зависимости от ответа и личных предпочтений, ученые считают, что нас ожидает все больше и больше солнечных дней. Так, аномальная жара в северо-западной Европе будет становится все более интенсивной, а на северо—западе Тихого океана температура во многих местах уже превышает сезонную норму на 6 градусов Цельсия. В то же самое время на другую сторону земного шара обрушилась целая серия тайфунов, а впереди – лесные пожары, ураганы и наводнения. По прогнозам специалистов, экстремальные периоды жары, обрушившиеся на планету в последние годы, станут неотъемлемой частью грядущего лета по всему миру, включая Россию. Согласно последним сообщениям синоптиков, лето 2023 года в нашей стране может стать самым жарким за последние 150 лет.

Читать далее

Физики получили детальное изображение ядра внутри атома.

Любовь Соковикова

Больше ста лет назад британский физик Эрнест Резенфорд провел ряд экспериментов, которые легли в основу нашего понимания строения атомов и радиоактивности. Открытие им атомного ядра (и первое искусственное превращение атомных ядер) привело к созданию новой концепции материи, согласно которой электроны, подобно планетам, движутся по орбитам вокруг атомного ядра, расположенного в центре. В 1911 году Резерфорд предположил, что ядро атома имеет положительный заряд, определяющий суммарное число электронов в атомной оболочке. В конечном итоге открытия Резерфорда, Нильса Бора, Ханса Гейгера и Петра Капицы показали, что атомное ядро действительно имеет положительный заряд, а окружающие его электроны (точнее, электронные облака) – отрицательный. Примечательно, что открытия выдающихся физиков были сделаны без непосредственного наблюдения атомов, но сегодня все изменилось – недавно исследователи из Брукхейвенской национальной лаборатории сообщили, что им удалось получить изображение ядра атома в электрическом поле. Впервые в истории.

Читать далее

Ученые наблюдали новый вид квантовой запутанности внутри атомных ядер.

Любовь Соковикова

Как устроена реальность? И не является ли она постоянной иллюзией? Физики десятилетиями пытаются ответить на эти вопросы, но чем больше они узнают о мире, тем более странным он становится. Мы знаем, что материя состоит из крошечных частиц, а их взаимодействие между собой едва ли можно представить. Взять, к примеру, квантовую суперпозицию – согласно этому принципу частицы могут находиться в нескольких состояниях одновременно, однако определить результат их состояния до момента наблюдения невозможно. Еще одним фундаментальным принципом физики элементарных частиц является квантовая запутанность, согласно которой частицы остаются взаимосвязанными вне зависимости от расстояния между ними. И хотя «привычная» запутанность демонстрирует иллюзорность нашей реальности, в начале 2023 года физики из Брукхейвенской национальной лаборатории (США) сообщили о ее новом виде, обнаруженном впервые в истории.

Читать далее

Нобелевская премия по физике 2022: квантовая запутанность и телепортация.

Любовь Соковикова

«Квантовая физика настолько сложная, что ее никто не понимает», – писал нобелевский лауреат Ричард Фейнман. И это не удивительно, так как даже Альберт Эйнштейн относился к ней настороженно, называя феномен квантовой запутанности «сверхъестественным» и «жутким». В вероятностной природе квантовой механики сомневался ирландский физик-теоретик Джон Белл и другие основоположники этой теории. Но несмотря на споры и разногласия, таинственный мир элементарных частиц стал драйвером современной цивилизации: интернет, компьютеры, смартфоны, лазеры, оптоволоконные сети и атомная энергетика существуют благодаря науке о квантах. Только представьте к чему могут привести дальнейшие открытия, которых с каждым годом становится все больше. Так, в 2022 году лауреатами Нобелевской премии по физике стали стразу трое ученых, которые независимо друг от друга проводили эксперименты с запутанными фотонами, сенсорными технологиями и безопасной передаче информации. К слову, не обошлось без квантовой телепортации, но обо всем по-порядку.

Читать далее

С точки зрения квантовой физики время – всего лишь иллюзия.

Любовь Соковикова

Мы воспринимаем время как стрелу, указывающую вперед. К тому же, пространство и время неразрывно связаны между с собой. Их дуэт проявляется в движении и развитии материи. Что же до главой силы во Вселенной, то гравитация искусно вплетает материальные объекты в ткань пространства-времени и дуэт превращается в трио. Общая теория относительности (ОТО) Эйнштейна удивительно точно описывает Вселенную. Но квантовая механика нарушает эту гармонию, ведь в мире субатомных частиц все устроено иначе. Две фундаментальные физические теории не согласуются друг с другом, что привело к кризису в современной физике. Но что, если взглянуть на ситуацию радикально по-другому? Существует ли вообще время? И если нет, то как тогда устроена Вселенная?

Читать далее

Физика частиц и новейшие технологии: что нас ждет в ближайшие 10 лет?

Любовь Соковикова

Квантовая теория родилась в первой половине XX века. Среди ее создателей были Нильс Бор, Альберт Эйнштейн, Макс Планк, Вернер Гейзенберг, Эрвин Шредингер и другие, не менее выдающиеся ученые. Создание Стандартной модели элементарных частиц ознаменовало собой революцию в понимании Вселенной. Именно квантовая теория подарила миру лазеры, МРТ, ускорители частиц, компьютеры, интернет и ядерное оружие. Но что дальше? Некоторые физики полагают, что в ближайшие пять лет будут созданы устройства, которые до недавнего времени описывались лишь на страницах научно-фантастических романов. Дело в том, что любой скачок в области квантовых вычислений увеличивает потенциал технологии, способной выполнять вычисления и моделирование, выходящие за рамки современных суперкомпьютеров. Иными словами, мир готовится к квантовому будущему. И если квантовые технологии действительно изменят вычисления в том виде, в каком мы их знаем, то какое будущее нас ждет?

Читать далее

Что происходит: квантовые компьютеры.

Любовь Соковикова

Нам с вами довелось жить в удивительное время. Не самое спокойное, конечно, но посмотрите, чего добилась наука – мы не просто дробим материю на атомы, мы создаем квантовые технологии и даже умеем ими пользоваться. Взять, к примеру, квантовые компьютеры. Эти машины выполняют вычисления на основе вероятности состояния объекта до его измерения — вместо 1 или 0 секунд. Это означает, что они могут обрабатывать экспоненциально больше данных по сравнению с классическими компьютерами, которые выполняют простые логические задачи и операции. Подобные технологии разрабатываются в течение десятилетий и по крайней мере две программы, написанные для квантового компьютера, датированы 90-ми гг.ХХ века. Одна из них раскладывает большие числа на простые множители и тем самым позволяет взломать нынешнее компьютерное шифрование. Вторая программа может осуществлять поиски, требующие квадратный корень от времени, которое затрачивается на них обычными компьютерами.

Читать далее

Физики впервые связали два разных квантовых объекта.

Любовь Соковикова

Наш мир устроен невероятно сложно. Если посмотреть в телескоп, то перед нами откроется целая Вселенная, бесконечная и расширяющаяся все быстрее и быстрее. От одной мысли о том, что в одной лишь наблюдаемой Вселенной существует около 10 триллионов галактик, может закружиться голова. Но отложив в сторону телескоп, мы вскоре понимаем, что вокруг нас (и внутри) обитают триллионы крошечных бактерий, микроорганизмов и вирусов, таких, как COVID-19. И если с помощью специальных инструментов посмотреть на этот скрытый мир поближе, мы, в конечном итоге узрим микромир, наполненный не только бактериями, но и атомами, из которых они состоят. В результате, мы сталкиваемся со сложным макромиром с его планетами и галактиками, и микромиром, работающим по своим собственным законам. Как отмечают физики, квантовая механика позволяет описать движение электронов и протонов, а также изучить, какими законами управляется микромир. Интересно, что одним из нерешенных и наиболее острых вопросов современной физики является несогласованность квантовой механики и Общей теории относительности Эйнштейна (ОТО), которая описывает, как устроен и наш мир и мир за пределами Земли. А недавно ученые пошли еще дальше. Они не только связали два квантово-запутанных объекта, но и изобрели новый подход для квантовых вычислений.

Читать далее

Существует ли объективная реальность?

Любовь Соковикова

Что такое реальность? И кто может дать ответ на этот вопрос? В прошлом году ученые из Университета Хериота-Уатта в Шотландии проверили интересный эксперимент, результаты которого предполагают, что объективной реальности может не существовать. Несмотря на то, что когда-то эта идея была просто теорией, теперь исследователи смогли перенести ее в стены университетской лаборатории, а значит проверить. Так как в квантовом мире измерения с разных позиций дают различные результаты, но при этом одинаково верны, проведенный эксперимент показал, что в мире квантовой физики два человека могут наблюдать одно и то же событие и разные результаты; при этом ни одно из этих двух событий не может быть воспринято как неправильное. Иными словами, если два человека видят две разные реальности, то договориться какая из них правильная они не смогут. Этот парадокс известен как «парадокс друга Вигнера» и теперь ученые экспериментально его доказали.

Читать далее

Китай создал квантовый сигнал связи с помощью спутника.

Любовь Соковикова

Международная команда ученых объявила о первой одновременной передаче зашифрованного квантового сообщения, которое было отправлено с космического спутника на два наземных телескопа, расположенных на расстоянии 1120 километров друг от друга. Таким безопасным каналом связи ученым удалось соединить города Наньшань и Дэлинха. Правда, пока данные передаются довольно медленно – на отправку одного байта уходит около полутора минут. Как пишет испанская El Pais, несмотря на то, что квантовые явления происходят в микроскопических масштабах, они могут оказывать влияние на видимый мир.

Читать далее

Почему квантовая физика сродни магии?

Любовь Соковикова

Что вы знаете о квантовой физике? Даже гуманитарию вроде меня понятно, что физика и квантовая физика изучают немного разные вещи. При этом физика в целом – это наука о природе, которая изучает то, как устроен мир и как все объекты и тела взаимодействуют друг с другом. Будучи разделом физики, квантовая механика изучает наш мир на самом глубинном уровне. Дело в том, что все, что нас окружает состоит из атомов. Да что там, даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Более того, эта область физики настолько сложная, что многие ученые признают, что плохо ее понимают. Учитывая растущее количество вопросов, на которых сегодня нет ответов и некую схожесть квантовой физики с магией, она невероятно привлекательна, но может ввести в заблуждение, как это успешно делают многие шарлатаны и лжеученые. В этой статье мы попытаемся понять что такое квантовая физика и почему она так похожа на волшебство.

Читать далее

Первая в истории фотография квантовой запутанности.

Николай Хижняк

Физики из шотландского университета Глазго сообщили об эксперименте, в результате которого ученые смогли получить первую в истории фотографию квантовой запутанности частиц. Явления по меркам физики настолько странного, что даже великий ученый 20-го века Альберт Эйнштейн прозвал его «жутким действием на расстоянии». Достижение шотландских ученых очень важно для разработки новых технологий. Почему? Давайте разбираться.

Читать далее

«Бактерии Шрёдингера»: чудо квантовой биологии?

Илья Хель

Квантовый мир весьма странный. В теории, да и на практике, до определенной степени, принципы квантового мира требуют, чтобы частица могла оказываться в двух местах одновременно — это парадоксальное явление известно как суперпозиция — и чтобы две частицы могли «запутываться», обмениваясь информацией через сколь угодно большие расстояния. Как именно — никто не знает в точности. Самым известным примером странности квантового мира можно назвать кота Шрёдингера, мысленный эксперимент, проведенный Эрвином Шрёдингером в 1935 году.

Читать далее

Начат эксперимент по моделированию первой искусственной квантовой жизни.

Владимир Кузнецов

Современные компьютеры дают довольно много возможностей по моделированию самых разных ситуаций. Однако любые вычисления будут в некоторой степени «линейны», так как они подчиняются четко прописанным алгоритмам и не могут от них отступить. И эта система не позволяет симулировать сложные механизмы, в которых случайность — это практически постоянное явление. Речь идет о симуляции жизни. А какое устройство могло бы позволить это сделать? Квантовый компьютер! Именно на одной из таких машин IBM был запущен самый масштабный проект по симуляции квантовой жизни.

Читать далее

Физики научились передавать кубиты по обычному оптоволоконному кабелю.

Владимир Кузнецов

Уже довольно много исследований сделано на тему передачи квантового сигнала и даже проведены успешные испытания этой технологии. Однако при всех потенциальных плюсах квантовых компьютеров и квантовой информационной сети есть у них существенный недостаток: специфическая единица передачи информации (кубит), для которой нужно с нуля прокладывать собственные линии связи. Но группа исследователей из Нидерландов добилась значительных успехов в этой сфере и сумела использовать для передачи кубитов обычное оптоволокно.

Читать далее

Квантовые технологии будущего будут использовать идентичные запутанные частицы.

Илья Хель

Обычно, когда физики выполняют квантовое запутывание частиц — будь то кубиты, атомы, фотоны, электроны и т.п., — эти частицы можно различить. Совсем недавно физики продемонстрировали возможность создания запутанных частиц, которые полностью идентичны. Что примечательно, это запутанность существует именно из-за неразличимости частиц, без какого-либо взаимодействия между ними. Но теперь, в новой работе, физики сделали еще один шаг, показав, что запутанность одинаковых частиц можно использовать и потенциально применить для квантовых приложений

Читать далее

Физики смогли квантово запутать облака атомов. Это вообще как?

Илья Хель

Квантовый мир атомов и частиц причудлив и удивителен. На квантовом уровне частицы могут проникать через непроницаемые барьеры и быть в двух местах одновременно. Однако странные свойства квантовой механики — это не математические причуды, это реальные эффекты, которые можно наблюдать в лаборатории снова и снова. Одна из самых характерных особенностей квантовой механики — это «запутанность». Запутанные частицы остаются загадочным образом связаны на любом расстоянии. И вот три независимых европейских группы ученых сумели запутать не просто пару частиц, как это делали прежде, а отдельные облака тысяч атомов. Они также нашли способ задействовать технологический потенциал своего достижения.

Читать далее

Китайский квантовый спутник передал данные на 7600 километров.

Вячеслав Ларионов

Китайский квантовый спутник был запущен на орбиту два года назад. С тех пор он помог в проведении целого ряда экспериментов, а прошлым летом даже смог передать информацию трём наземным станциям, расположенным на расстоянии в тысячу километров друг от друга. На днях китайские физики вновь поставили рекорд, передав данные по защищённому каналу между австрийским городом Грац и китайским Синлуном. Расстояние между городами составляет более 7 тысяч километров.

Читать далее

В Австрии создали рабочий прототип квантового роутера.

Владимир Кузнецов

Как пишет редакция издания Science Alert, группа специалистов из Университета Вены смогла разработать первый в истории квантовый роутер и даже провела первые испытания нового устройства. Это первое устройство, которое может не только принимать запутанные фотоны, но и передавать их. Кроме того, схема, используемая в роутере, может стать основой для создания квантового интернета.

Читать далее

В Китае построили первую коммерческую квантовую коммуникационную сеть.

Владимир Кузнецов

Мы уже неоднократно писали о том, что в разных концах света то и дело проходят испытания устройств квантовой связи. Казалось бы, дальше экспериментов все это зайдет не скоро, но вот, как сообщает агентство новостей Синьхуа, в Китае завершили создание первой в стране коммерческой сверхзащищенной квантовой коммуникационной сети. Ввод в эксплуатацию планируется в самое ближайшее время.

Читать далее