Наша Вселенная родилась в лаборатории?

Любовь Соковикова

Как появилась Вселенная? Мы знаем, что Большой взрыв состоялся около 14 млрд лет назад, сделав возможным наше существование. Мир удивителен и вряд ли нам когда-нибудь удастся раздать все его тайны. Но мы попробуем это сделать и учтем даже самые безумные предположения. Например о многомировой интерпретации, согласно которой наша Вселенная не единственная в своем роде, а лишь песчинка в бескрайнем море Мультивселенных. Это предположение естественным образом следует из квантовой механики, но никаких доказательства существования Мультиверса на сегодняшний день нет. Как нет и возможности путешествий во времени (что, кстати, удается квантовым частицам), в противном случае мы об этом знали. Некоторые ученые, например, профессор Ави Леб из Гарвардского университета и вовсе не исключает, что наш мир создан в лаборатории. Но если это действительно так, то кому понадобилась подобная «игрушка»?

Читать далее

Наблюдатель без наблюдателя: как отследить квантовые частицы?

Любовь Соковикова

В 2017 году исследователи из Кембриджского университета, кажется, добились невозможного — они открыли способ наблюдать квантовые частицы, не наблюдая при этом за ними напрямую! Одна из фундаментальных идей квантовой теории гласит, что квантовые объекты способны существовать в двух состояниях одновременно: и волны и частицы. При этом ни одна частица не может существовать без другой пока обе не будут измерены наблюдателем. Работа британских исследователей представляет квантовые частицы в совершенно новом свете, потенциально помогая другим ученым понять их движение и поведение. Интересно, что открытие служит предпосылкой для знаменитого мысленного эксперимента Эрвина Шредингера: если поместить в коробку колбу с радиоактивным веществом и специальным механизмом, ее открывающим, а следом взять кошку и закрыть ее в этой коробке, кошка окажется в суперпозиции – совокупности всех состояний, в которых может одновременно находиться кошка. В некотором смысле исследователи смогли изучить «запретную область» квантовой механики, отслеживая движения квантовых частиц, не наблюдая за ними напрямую.

Читать далее

Могут ли странные квантовые объекты объяснить наше существование?

Любовь Соковикова

Каждый из нас хочет знать кто мы, откуда и куда движемся. Ответы на эти вопросы предлагают самые разные люди, от философов до священников и физиков-теоретиков, но именно последние обладают наибольшими знаниями о Вселенной. До начала ХХ века, однако, никто и предположить не мог, что элементарных частиц окажется так много, что из них можно составить целый «зоопарк». Лишь в 1925 году на смену старой квантовой теории пришла квантовая механика, которая основывается на волновых уравнениях и принципе неопределенности, а ее положения значительно отличаются от положений механики классической. Всего за несколько десятилетий было обнаружено множество элементарных частиц, а их взаимодействие друг с другом легло в основу Стандартной модели. Запуск Большого адронного коллайдера (БАК) и последующее обнаружение «частицы Бога» – по-научному Бозон Хиггса – стало лишь началом в понимании нашего сложного мира. Каждый год ученые открывают новые частицы, параллельно пытаясь ответить на вопрос о том, почему мы существуем.

Читать далее

Как стать невидимым? Ученые, кажется, нашли ответ.

Любовь Соковикова

Кто из нас в детстве не мечтал о шапке-невидимке? Или о волшебном плаще, надев который, вас не увидит ни одно живое существо на свете. Да, истории эти, кажется, стары как мир и абсолютно точно являются выдумкой. Но не спешите прощаться с шапкой-невидимкой: результаты нового исследования показали, что невидимость – никакая не выдумка и даже не научная фантастика. Скажем больше – еще в апреле исследователи разработали уникальную световую волну, которая при прохождении через объект делает объект невидимым для камер и даже человеческого глаза! Чтобы найти волшебную световую волну, команда направила свет на непрозрачный слой случайно расположенных наночастиц оксида цинка. Они рассчитали, как рассеивается свет порошком оксида цинка и как он рассеивался бы, если бы порошка там вообще не было. «Каждый из этих паттернов световых волн изменяется и отклоняется очень специфическим образом, когда вы посылаете его через неупорядоченную среду», – пояснил профессор Стефан Роттер из Института теоретической физики в официальном заявлении.

Читать далее

Время на квантовом уровне течет иначе. Но как? И что это означает для физики?

Любовь Соковикова

До начала ХХ столетия считалось, что время – есть величина абсолютная. Но после того, как Альберт Эйнштейн опубликовал общую теорию относительности (ОТО), стало понятно, что время – понятие более субъективное и имеет отношение к наблюдателю, который его измеряет. И все же, многие продолжали трактовать время так, словно это прямая железнодорожная линия, двигаться по которой можно только вперед или назад. Но что, если эта железнодорожная линия ветвится или вовсе имеет окружные пути, двигаясь по которым поезд возвращается на станцию, которую уже проезжал? Иными словами, можно ли путешествовать в будущее или прошлое? Начиная со знаменитого романа Герберта Уэллса «Машина времени», научные фантасты придаются фантазиям во всю. Но в реальной жизни представить нечто подобное невозможно. Ведь если бы кто-то в будущем изобрел машину времени, неужто он бы не предупредил нас об угрозе пандемии COVID-19 или об ужасных последствиях глобального потепления? Но к нам так никто и не прибыл. Быть может, стоит посмотреть на время под другим углом?

Читать далее

Квантовый мир: как связаны стерильные нейтрино и темная материя?

Любовь Соковикова

Самые распространенные частицы природы, за исключением фотонов (частиц света) – это нейтрино. Они не имеют заряда и исходят от Солнца, а также от сверхновых и других космических событий. Более того, около триллиона нейтрино прямо сейчас проходят через вашу руку! Ученые выделяют несколько типов или разновидностей нейтрино: электронные, мюонные и тау-нейтрино, а также надеются на существование четвертого типа – «стерильных нейтрино». Если они действительно существуют, то помогли бы разрешить несколько фундаментальных загадок в физике, например, почему нейтрино имеют массу, в то время как теории предсказывают, что массы у этих частиц быть не должно? Стерильные нейтрино также связывают с таинственный субстанцией, которая заполняет 85% наблюдаемой Вселенной – темной материей, пронизывающей космос. Наличие этих загадочных частиц предсказывали ранее проведенные эксперименты, но вот незадача: теория также предсказывает возможное существование не только «стерильных» нейтрино, но и множества других, дополнительных частиц. Эти нейтрино могли бы взаимодействовать друг с другом посредством своих собственных тайных сил где-то на задворках Вселенной. Но обо всем по порядку.

Читать далее

Физики получают все больше доказательств существования новой, неизвестной силы природы.

Любовь Соковикова

В начале этого года ряд экспериментов на Большом адронном коллайдере (БАК) показал удивительные результаты – оказалось, что кварки превращаются в другие частицы под воздействием неизвестной силы. Иными словами, полученные данные свидетельствуют о возможном существовании новой фундаментальной силы природы, что ставит под сомнение основные принципы Стандартной модели – наиболее общепринятой физической теории, описывающей все, что мы знаем о материи, составляющей окружающий мир. Но так как ученые – люди осторожные, говорить о «крахе Стандартной модели» или новой силе природы рано – необходимо больше исследований и больше доказательств. И все же, работа физиков из Европейской организации ядерных исследований (ЦЕРН), которая предрекает скорый конец нашим представлениям о физике, вдохновила ученых из Кембриджского университета, да так, что те доказали наличие постоянной аномалии в мире мельчайших элементарных частиц: неизвестная науке сила природа действительно ожидает своего часа, чтобы объяснить квантовую гравитацию, Большой взрыв, темную материю и в конечном итоге создать Теорию всего.

Читать далее

Ученые впервые сфотографировали кристаллы Вигнера. Рассказываем что это такое и как физикам это удалось.

Любовь Соковикова

Наша планета удивительна. Жизнь на ней настолько разнообразна, что существует множество тел и веществ, как естественных (животные и люди, планеты и звезды) так и искусственных (созданных человеком). Эти вещества и тела бывают твердыми и жидкими, например, вода и кристаллы. Последние особенно интересны, так как представляют собой твердые тела, атомы в которых расположены закономерно, образуя так называемую кристаллическую решетку. По сути, естественное состояние кристалла – это форма правильных симметричных многогранников, которая основана на их внутренней структуре. То есть на одном из нескольких определенных и регулярных расположений, составляющих вещество частиц (ионов, атомов и молекул). Согласитесь, действительно интересно. Именно так в 1934 году размышлял Юджин Вигнер, один из основателей теории симметрии в квантовой механике. Он предсказал, что электроны в материалах теоретически могут выстраиваться в правильные кристаллические структуры, благодаря тому, что отталкиваются друг от друга. Таким образом, если энергия кристаллического отталкивания между парой электронов больше, чем энергия их движения, то их расположение приведет к тому, что полная энергия будет наименьшей, а мы получим систему, аналогичную твердому телу.

Читать далее

Что такое кристаллы времени и почему ученые ими одержимы?

Любовь Соковикова

О чем вы думаете когда слышите о кристаллах времени? Мне сразу представляется что-то наподобие тессеракта из мультивселенной Марвел или очередное безумное изобретение гениального Рика из «Рик и Морти». Только представьте – таинственные кристаллы времени, способные перенести их обладателя как в прошлое, так и в будущее. Но, я, конечно, пересмотрела научной фантастики и в реальности кристаллы времени или кристаллы Вильчека не способны перемещать кого-либо или что-либо во времени. И все же, физики ими буквально одержимы. Причина этой одержимости на самом деле проста: по сути, кристалл времени – это особая фаза материи, которая постоянно меняется, но, похоже, не использует энергии. Только представьте, объект, части которого движутся в регулярном, повторяющемся цикле, поддерживает это постоянное изменение без сжигания какой-либо энергии. Вообще. Кристаллы времени также являются первыми объектами, которые спонтанно нарушают «симметрию перемещения во времени» – обычное правило, согласно которому стабильный объект будет оставаться неизменным на протяжении всего времени. Кристаллы времени одновременно стабильны и постоянно меняются через определенные промежутки времени.

Читать далее

Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Любовь Соковикова

Ну что, поговорим немного о квантовой механике? Согласна, довольно сложная тема, но эта сложность лишь придает ей пикантности и остроты. Как и многочисленные предположения о существовании Мультивселенной и параллельных реальностей. К слову сказать, современная физика изобилует подобными идеями, но мы с вами остановимся на одной из, по моему скромному мнению, самых интересных из них – многомировой интерпретации квантовой механики или интерпретации Эверетта. В 1954 году, будучи аспирантом Принстонского университета, физик Хью Эверетт пришел к революционной интерпретации нерелятивистской квантовой механики, которую полностью развил за два последующих года. Однако научное сообщество не придало особого внимания трудам Эверетта, так как работа не вела к новым предсказаниям и к тому же выглядела парадоксальной и в целом ненужной. Более того, его труд никак не повлиял на основную линию развития теоретической физики и создание Стандартной модели физики элементарных частиц. И все же, десятилетия спустя работа Эверетта привлекла внимание космологов. И хотя практических последствий она по-прежнему не принесла, это не значит, что видение мира, описанное в работе выдающегося физика, не стоит нашего с вами внимания.

Читать далее

Итальянский физик-теоретик Карло Ровелли считает, что наша реальность – это «игра квантовых зеркал».

Любовь Соковикова

Итальянский физик-теоретик, основоположник теории петлевой квантовой гравитации Карло Ровелли в своей книге под названием «Гельголанд» пытается объяснить безумно сложную теорию квантовой механики, рассматривая мир фотонов, электронов, атомов и молекул, который подчиняется правилам, идущим вразрез с нашей повседневной физической реальностью. Напомним, что квантовая теория возникла из наблюдений Гейзенберга и более ранней теории относительности Эйнштейна. До Эйнштейна ученые верили в предсказуемую, детерминированную Вселенную, управляемую часовым механизмом. Так, ньютоновской идее об абсолютном «истинном времени», неумолимо тикающем во Вселенной, противостояла теория Эйнштейна о том, что единого «сейчас» нет, скорее, существует множество «сейчас». Гейзенберг и его последователи считали, что мы не можем знать современное состояние мира во всех деталях. Все, что нам дозволено – исследовать мир с помощью моделей неопределенности и вероятности.

Читать далее

Корпускулярно-волновой дуализм подтвердили экспериментально. Что это значит?

Любовь Соковикова

Иногда вещи, которые на первый взгляд кажутся невероятно простыми, на самом деле оказываются чуть ли не самыми сложными. Взять, к примеру, свет. Древние цивилизации испытывали больше трудностей в понимании его природы, чем в понимании вещества – чего-то, к чему можно прикоснуться. Сегодня мы знаем, что свет – это не только способ переноса энергии от Солнца к Земле, делающей жизнь на нашей планете возможной, но и невидимая сеть из фотонов, которая позволяет электромагнетизму работать на расстоянии. Интересно, что до конца XVII века существовало две противоположные теории света. Так, Ньютон считал, что свет состоит из крошечных частиц, которые он назвал корпускулами. Но другие ученые, включая современников английского физика, полагали, что свет состоит из волн, как рябь, движущаяся по поверхности воды. Многим позже шотландскому физику Джеймсу Клерку Максвеллу удалось объединить Ньютоновские корпускулы и волновую теорию света, создав теорию, в которой эти явления были хорошо собраны воедино.

Читать далее

Что квантовая физика может рассказать о природе реальности?

Любовь Соковикова

Удивительная способность предков каждого из ныне живущих на планете людей к выживанию позволила нам с вами наслаждаться всеми благами и достижениями цивилизации. Но раз уж на то пошло и миллионы лет эволюции позволили нам познать самих себя и окружающий мир, то что за это время нам удалось узнать о Вселенной? На самом деле не так уж много – по меркам той же Вселенной мгновение. И все же, все существующие на сегодняшний день физические теории описывают мир невероятно точно. Так, и классическая физика и квантовая механика по отдельности превосходно работают. Вот только все попытки объединить их в единую теорию по-прежнему не увенчались успехом, а значит наше понимание Вселенной и реальности нельзя назвать полноценным. В начале 1900-х годов рождение квантовой физики ясно показало, что свет состоит из крошечных неделимых единиц, или квантов – энергии, которую мы называем фотонами. Эксперимент Юнга, проведенный с одиночными фотонами или даже отдельными частицами материи, такими как электроны и нейтроны, представляет собой головоломку, поднимающую фундаментальные вопросы о самой природе реальности. Решить ее ученые не могут до сих пор.

Читать далее

Физики зафиксировали тысячи молекул в одном квантовом состоянии.

Любовь Соковикова

Автором нового исследования, опубликованное в журнале Nature, похоже удалось решить одну из самых важных задач квантовой физики – они продемонстрировали как привести несколько молекул сразу в единое квантовое состояние. Напомню, что когда группа частиц, охлажденных до абсолютного нуля, разделяет единое квантовое состояние и вся группа начинает вести себя так, как если бы это был один атом, физики говорят о конденсате Бозе-Эйнштейна. Этого состояния, безусловно, достичь трудно, но когда это происходит, открывается целый мир новых возможностей. Ученые проделывали это с атомами на протяжении десятилетий, но проделай они то же самое с молекулами, сегодня мы, вероятно, обладали бы разными формами квантовых технологий. Но поскольку молекулы больше атомов и имеют гораздо больше движущихся частей, большинство попыток обуздать их не увенчались успехом. Впрочем, так было до конца апреля этого года – в ходе нового исследования команда физиков охладила атомы цезия, а затем ограничила молекулы таким образом, чтобы они находились на двумерной поверхности и могли двигаться только в двух направлениях. В результате получился набор практически идентичных молекул в едином квантовом состоянии.

Читать далее

Физики изобрели способ обнаружить темную материю.

Любовь Соковикова

Нашу Вселенную формирует нечто, что мы c вами не можем непосредственно наблюдать. Эта таинственная субстанция, называемая темной материей, заполняет 85% Вселенной и ответственна за ее структуру и расположение галактик и звезд. Так как темная материя не взаимодействует со светом, но имеет вес, измерить ее можно только косвенно – темная материя искривляет свет звезд из-за гравитационного эффекта, подобно тому, как стекло преломляет свет. Стоит ли удивляться, что эта таинственная субстанция десятилетиями ставила ученых в тупик. Но наука не стоит на месте и последние исследования в области квантовых технологий могут оказаться жизненно важным звеном в разгадке тайны темной материи. Недавно коллаборация исследователей из США разработала новые устройства, использующие квантовые вычислительные биты, способные обнаруживать слабые сигналы от любой из субатомных частиц. Новый метод, как полагают физики, позволит искать доказательства существования темной материи в 1000 раз быстрее, чем когда-либо.

Читать далее

Ограничения скорости обнаружены в квантовом мире.

Любовь Соковикова

Если квантовая теория верна, то от таких квантовых частиц как атомы, можно ожидать очень странного поведения. Но несмотря на хаос, коим может показаться квантовая физика, в этом удивительном мире крошечных частиц действуют свои собственные законы. Недавно команде ученых из Университета Бонна удалось доказать, что в квантовом мире – на уровне сложных квантовых операций – действует ограничение скорости. Атомы, будучи маленькими частицами, в некотором смысле напоминают пузырьки шампанского в бокале. Описать их можно как волны материи, однако их поведение больше напоминает бильярдный шар а не жидкость. Каждый, кому в голову придет идея очень быстро переместить атом из одного места в другое, должен действовать со знанием дела и сноровкой как у опытного официанта на банкете – не пролив ни капли шампанского из десятка бокалов на подносе, лавируя между столиками. Но даже в таком случае экспериментатор столкнется с определенным ограничением скорости – лимитом, превысить который невозможно. Полученные в ходе исследования результаты важны для работы квантовых компьютеров, а эта область, как наверняка знает уважаемый читатель, в последние годы активно развивается.

Читать далее

Странная связь человеческого разума и квантовой физики.

Любовь Соковикова

Никто не знает что такое сознание и как оно устроено. Безусловно, у ученых из разных областей науки есть самые разные предположения на этот счет, однако точного ответа на вопрос о том, что представляет собой сознание, никто дать не может. Похожая ситуация наблюдается и с квантовой механикой – изучая взаимодействие мельчайших частиц Вселенной между собой физики многое узнали. Но так как квантовая механика не согласуется с общей теорией относительности Эйнштейна, исследователи не могут понять как привести их к общему знаменателю. По мнению одного из величайших ученых ХХ века, физика Ричарда Фейнмана, по-настоящему квантовую механику не понимает никто. Интересно, что с таким же успехом он мог бы говорить о столь же запутанной проблеме сознания. Несмотря на то, что некоторые ученые полагают, что сознание – всего лишь иллюзия, другие, напротив, считают, что мы вообще не понимаем, откуда оно берется. Так что не удивительно, что извечная загадка сознания побудила некоторых исследователей обратиться к квантовой физике для ее объяснения. Но как одну неразгаданную тайну можно объяснить другой?

Читать далее

Ученые приблизились к созданию новой теории квантовой гравитации.

Любовь Соковикова

Классические модели физики – законы движения Ньютона и Общая теория относительности Эйнштейна предполагают, что такие свойства объекта как положение и движение являются абсолютными. Эти теории являются венцом достижений современной физики, описывающей природу изысканно, но по отдельности. ОТО имеет дело с большими знакомыми объектами и событиями Вселенной, в то время как квантовая механика охватывает невидимый и странный микромир, где две частицы, разделенные тысячами световых лет, могут мгновенно реагировать на движения друг друга. Эти два теоретических мира, определенный классический и неопределенный квантовый, работают чрезвычайно хорошо. Классический для больших массивных объектов, таких как бейсбольные мячи и планеты, и квантовый для малых легких объектов, таких как атомы и молекулы. Однако оба этих подхода рушатся, когда мы пытаемся изучать массивные, но маленькие объекты, например внутреннее устройство черных дыр или наблюдаемую Вселенную вскоре после Большого взрыва. Но почему?

Читать далее

Что нужно знать о новой квантовой теории времени?

Любовь Соковикова

Что такое время и может ли быть так, что все наши представления о нем ошибочны? Если попробовать разобраться, окажется, что человечество воспринимает время достаточно просто – оно движется вперед и не может повернуть назад. Более того, ход времени неумолим и мы никоим образом не можем на него повлиять. Недавно команда исследователей из Центра квантовой динамики Университета Гриффита, Национального института измерений (NMI) и Австралийской организации ядерных наук и технологий (ANSTO) поставила эксперимент, главной целью которого являлась попытка доказать правильность или неправильность современной квантовой теории времени. Новая революционная теория, по мнению ее авторов, может перевернуть все наши представление о времени и пространстве – все потому, что она допускает возможность существования статичной и неизменной Вселенной. Физики предположили, что факт изменения вещей с течением времени не является врожденной особенностью природы, а скорее вызван фундаментальным нарушением симметрии обращения времени, называемым «Т-нарушением». Если ученые окажутся правы, то их работа перевернет все современные представления о времени и пространстве, а также изменит наш взгляд на фундаментальные законы природы.

Читать далее

Что доказывает теорема Пуанкаре о возвращении.

Артем Сутягин

Все началось еще в конце XIX века, когда ученый из Франции, Анри Пуанкаре, изучал различные части систем, которые могут быть полностью проанализированы. Как обычно, звучит это не так сложно, но именно его труды легли в основу большой задачи и стали одной из загадок, которую ученые современности называют ”Задачами тысячелетия”. Думаю вы легко согласитесь, что если подождать достаточное количество времени, то планеты в небе выстроятся в нужную вам линию. Так же будет и с частицами газа или жидкости, которые могут сколько угодно менять свое положение, но теоретически в один из моментов времени выстроятся относительно друг друга так, как они располагались в момент начала измерений. На словах все просто — рано или поздно это случится, иначе быть не может. Вот только на деле доказать это довольно сложно. Именно над этим и работал Анри Пуанкаре больше века назад. Позже его теории были доказаны, но от этого не стали менее интересными.

Читать далее