Найти жизнь в Солнечной системе будет труднее, чем считалось раньше

27 Мая 2016 в 19:30, Алекс Кудрин 6 089 просмотров 9

Найти жизнь в Солнечной системе будет труднее, чем считалось раньше

Отыскать жизнь или ее останки на Марсе или Европе, как выяснилось, будет весьма непросто. Причина тому — разрушающее воздействие космической радиации. Два новых исследования показывают, что галактическое излучение быстро разрушает вещества биологического происхождения, которые ученые надеются найти на Марсе и спутнике Юпитера Европе.

Тела Солнечной системы постоянно подвергаются облучению со стороны Солнца и больших планет, таких как Юпитер. Однако самые большие дозы радиации приносят галактические космические лучи, приходящие от отдаленных источников, например, взрывающихся звезд.

Толстая атмосфера защищает Землю и жизнь на ее поверхности от смертельной радиации. Однако другим планетам повезло меньше. Так, Марс обладает очень тонкой атмосферой, а у Европы ее вообще нет. По этой причине радиация не только убила бы живые организмы на поверхности этих миров, но и ликвидировала бы даже их останки и следы жизнедеятельности.

Многие исследователи скептически относятся к гипотезе о существовании жизни на марсианской поверхности. Однако не исключено, что живые организмы жили на Марсе в далеком прошлом. Грядущие экспедиции могли бы найти доказательства этому в виде окаменелостей или молекул биологического происхождения, например, аминокислот, из которых строятся белки.

Однако найти такие свидетельства можно будет только при условии их сохранения на Марсе или Европе в течение длительного времени — миллиардов лет. Чтобы проверить вероятность этого, Александр Павлов, ученый из NASA, и его коллеги решили выяснить, могут ли аминокислоты выдерживать дозы радиации, аналогичные тем, которые воспринимает марсианская поверхность.

В более ранних работах уже было показано, что аминокислоты могут существовать на Марсе до миллиарда лет. Однако команда Павлова пошла дальше — ученые смешивали аминокислоты с каменистым материалом, близким по составу к марсианскому грунту. Исследователям удалось установить, что для полного распада в условиях марсианской радиации аминокислотам понадобится всего 50 миллионов лет.

«Более 80% аминокислот разрушаются при дозе облучения в 1 мегагрей, что эквивалентно 20 миллионам лет на Марсе. Если мы собираемся искать древние биомаркеры, нас ждут проблемы», — рассказывает Павлов.

На следующем этапе экспериментов ученые поместили образцы, содержащие аминокислоты, в воду, чтобы сымитировать условия, характерные для районов Марса, которые в далеком прошлом были влажными. Как выяснилось, в присутствии воды биомаркеры разрушаются еще быстрее — всего за 0,5—10 миллионов лет.

Ученые пришли к выводу, что найти останки живых организмов среди гидратированных минералов на поверхности Марса будет крайне сложно.

Конечно, низкие температуры замедляют распад биомаркеров, и в ряде случаев они могут продержаться до 100 миллионов лет, но этого все же недостаточно для того, чтобы они сохранились до наших дней. Исследователи считают, что их открытие — плохая новость для тех, кто с нетерпением ждет новых миссий, направленных на поиск марсианской жизни.

Спутник Юпитера Европа — один из главных объектов для поиска жизни в Солнечной системе. Под ледяной коркой этой луны скрывается глобальный океан глубиной в десятки километров, в котором ученые надеются когда-нибудь отыскать живые организмы.

NASA планирует миссию к Европе в 2020-х годах и не исключает наличия у будущей межпланетной станции посадочного модуля. Конечно, спускаемый аппарат вряд ли сможет пробурить ледяной панцирь Европы, толщина которого предположительно составляет 10—30 километров. Однако есть надежда, что свидетельства жизни из недр спутника могут подниматься на его поверхность.

Известно, например, что в некоторых местах поверхность Европы имеет красноватый оттенок, что означает присутствие солей, поднявшихся из океана. Ученые также предполагают, что из недр Европы могут бить гейзеры или султаны, как это происходит на спутнике Сатурна Энцеладе.

Ученый NASA Луис Теодоро (Luis Teodoro) решил выяснить, как космическая радиация может сказаться на жизни или ее останках в условиях Европы. Результаты Теодоро оказались похожими на выводы Павлова.

«Радиация проникает на несколько десятков метров в глубь ледяной коры Европы. Останки самых стойких бактерий-экстремофилов, обитающих на Земле, не продержатся в верхних слоях ледяного щита (1 метр в глубину) больше 150 тысяч лет. Некоторые биомаркеры могут сохраняться на этой глубине не дольше 1—2 миллионов лет», — сообщил Теодоро.

Конечно, есть надежда, что исследовательский зонд сможет найти биомаркеры в веществе, выброшенном на поверхность Европы относительно недавно. Поэтому так важно найти места, где из ледяного панциря бьют гейзеры.

«Полученные данные говорят о том, что вряд ли мы обнаружим жизнь на поверхности Европы. Но это не означает, что ее нет в огромном океане, который спрятан под ледяной корой», — обнадежил энтузиастов Теодоро.

Найти жизнь в Солнечной системе будет труднее, чем считалось раньше

Приложение
Hi-News.ru

Новости высоких технологий в приложении для iOS и Android.

9 комментариев

  1. Mr_Randy

    Да ладно? Может вообще невозможно найти жизнь? (отправлено из Android приложения Hi-News.ru)

  2. Rillan

    В чем смысл статьи ? Расказать об очевидном ? Повторить то, что мусолят уже как лет 50-60 ?
    Давайте статью о том, что если камню обломать углы, он станет подобен колесу, глядишь эволюционируем

  3. kotofei

    есть только одно замечание, биологические маркеры исчезнут если жизнь погибла. А если жизнь в виде бактерий есть и смогла эволюционировать в условиях повышенной радиации создав механизмы защиты жизнедеятельности(например быстрый ремонт), то возможно все не так плохо. Весьма возможен вариант заселения с земли бактериями, особенно если бактерии обитают в высших слоях атмосферы Земли, где высокая радиация и некоторые бактерии уже там могли приобрести эти самые механизмы, ну а дальше открытый космос и разными путями на разные планеты и спутники. Ну это так размышления.

    • kotofei

      Т.е. я хотел сказать что малый срок(ну это как сказать 10 млн лет это не так уж мало) жизни биологических маркеров не означает что жизни там нет. Вероятность конечно большая, но не 100% и даже не 99%

    • kotofei

      Хотя меня больше беспокоит как обезопасить жизнь космонавтов от радиации при таких не далеких путешествиях. Даже путешествие на Луну очень опасно для здоровья, т.к человек пролетает не только через космос наполненной солнечной радиацией, но и так же через радиационный пояс Земли где частицы высоких энергий накапливаются и движутся как машины в плотной магистрали.

Новый комментарий

Для отправки комментария вы должны авторизоваться или зарегистрироваться.