В данных ядерного реактора обнаружили намек на четвертый тип нейтрино

Илья Хель 15

В туннелях глубоко внутри гранитной скалы в Дайя-Бей, на ядерном реакторе в 55 километрах от Гонконга, чувствительные детекторы уловили намек на существование новой формы нейтрино, одной из самых неуловимых и многочисленных частиц в природе. Нейтрино, электрически нейтральные частицы, которые откликаются лишь на гравитацию и слабое ядерное взаимодействие, взаимодействуют с материей так слабо, что сотни триллионов нейтрино ежесекундно пролетают через ваше тело, а вы даже не замечаете. Они бывают трех типов: электронные, мюонные и тау. Результаты Дайя-Бей указали на возможное существование четвертого, еще более загадочного и неуловимого типа частиц.

В данных ядерного реактора обнаружили намек на четвертый тип нейтрино. Четвертый тип нейтрино может существовать. Фото.

Четвертый тип нейтрино может существовать.

Стерильное нейтрино, как его обозвали, не является переносчиком какого-либо заряда и будет непроницаемым для всех сил, кроме гравитации. И только сбрасывая свою накидку невидимости, превращаясь в электронное, мюонное или тау-нейтрино, стерильное нейтрино становится уязвимым для обнаружения. Окончательно подтверждение его существования «откроет целый проспект новых исследований», говорит физик частиц Стивен Парке из Национальной ускорительной лаборатории Ферми в Батавии.

Возможное доказательство существования стерильной частицы вытекает из несоответствия между теорией и экспериментом. Если ядерный реактор производит пучок только одного типа нейтрино, теория предсказывает, что некоторые из них должны изменить свою сущность по мере движения к удаленному детектору. Проанализировав более 300 000 электронных антинейтрино, собранных ядерными реакторами Дайя-Бей за 217 дней работы, ученые обнаружили нехватку 6% частиц, предсказанных стандартной моделью физики элементарных частиц. Физик частиц Кам-Бью Люк из Калифорнийского университета в Беркли и его коллеги сообщили о находке в феврале в журнале Physical Review Letters.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Одним из объяснений этого дефицита может быть то, что некоторые электронные антинейтрино трансформировались в недетектируемые и легкие стерильные нейтрино, с одной миллионной массой электрона. Другие исследования на ядерных реакторах, включая эксперимент на реакторе Bugey в Сен-Вюльба, Франция, также показали подобный дефицит электронных антинейтрино. Исследования пучков мюонных антинейтрино на некоторых ускорителях частиц показали еще и излишек электронных антинейтрино, что тоже можно отнести на счет «ловкости рук» невидимых стерильных нейтрино.

Результат Дайя-Бей обеспечивает самые точные на текущий момент измерения энергий антиэлектронных нейтрино в ядерном реакторе. Но статистическая значимость дефицита недостаточно высока, чтобы можно было огласить об открытии. Это открытие на «три сигма», то есть существует 0,3-процентная вероятность, что недостаток электронных нейтрино мог бы образоваться и в отсутствие стерильных нейтрино. Физики, как правило, стремятся к значению в пять сигма, чтобы открытие могло быть ошибочным лишь с вероятностью в 0,00003%.

Помимо намека на стерильные нейтрино, результаты на Дайя-Бей выявили вторую странную особенность — излишек электронных антинейтрино (по сравнению с теоретическими прогнозами) на энергии в 5 миллионов электрон-вольт. Это могло бы быть знаком, указывающим на открытие совершенно новой физики (или просто чего-то, что физики смогут объяснить за пределами ядерного реактора). Возможно, объяснение этого всплеска могло бы даже устранить необходимость привлечения стерильных нейтрино для объяснения общего дефицита электронных антинейтрино.

В данных ядерного реактора обнаружили намек на четвертый тип нейтрино. Наглядная демонстрация. Фото.

Наглядная демонстрация.

Если же окончательное доказательство существования легкого стерильного нейтрино будет обнаружен, «сообщество теоретиков перевернется», говорит Парке, и это открытие могло бы оказать большее влияние, чем бозон Хиггса, за обнаружение которого присудили Нобелевскую премию и который объясняет, почему у элементарных частиц есть масса.

«Найти стерильное нейтрино чрезвычайно важно, поскольку это будет первое открытие частицы, которая не вписывается в рамки так называемой Стандартной модели», говорит физик частиц Карло Джунти из Университета Турина в Италии.

Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.

Один из самых первых экспериментов, который позволил предположить наличие стерильных нейтрино, проходил с участием Liquid Scintillator Neutrino Detector (LSND), который работал при Лос-Аламосской национальной лаборатории в Нью-Мексико с 1993 по 1998 год. LSND обнаружил, что мюонные антинейтрино, пропущенные через 167 тонн нефтепродуктов, превратились в электронные антинейтрино, указав при этом на возможное наличие четвертого типа нейтрино. Затем, с 2002 по 2012 год, в Лаборатории Ферми проводился эксперимент под названием MiniBooNE, который привел к подобным результатам. Очередной эксперимент MiniBooNE начался в октябре. MicroBooNE — это первый из трех жидких аргоновых детекторов, расположенный на трех различных расстояниях от источников нейтрино в Лаборатории Ферми, который будет с беспрецедентной точностью оценивать преобразование нейтрино из одного типа в другой.

Расположенный в 470 метрах от Booster Neutrino Beamline при Fermilab, MicroBooNE — это центр тройки детекторов, в которую в 2018 году войдут ICARUS, самый дальний детектор (на расстоянии 600 метров), и Short-Baseline Near Detector (в 100 метрах от источника). Первые результаты тройки детекторов ожидаются в 2021 году, говорит физик элементарных частиц Питер Уилсон из Fermilab.

Эти детекторы также послужат прототипом для Deep Underground Neutrino Experiment, масштабного эксперимента, который будет посылать созданные на Fermilab нейтрино в 1300-километровое путешествие на Сэнфордскую подземную исследовательскую станцию недалеко от Лида.

В то же время коллаборация Дайя-Бей объединилась с другим экспериментом Лаборатории Ферми, Main Injector Neutrino Oscillation Search, чтобы продолжить поиски стерильных нейтрино. Хотя данные с экспериментов на ускорителе и реакторе пока не демонстрируют законченную картину, «скоро мы узнаем получше, ждут ли нас стерильные нейтрино», говорит Люк.

Если легкие стерильные нейтрино существуют, у них могут быть братья и сестры в 1000 раз тяжелее. Эти частицы могли бы внести свой вклад в пока не определенную темную материю, невидимый гравитационный клей, который удерживает галактики от разбегания и формирует крупномасштабную структуру Вселенной. Отпечатки этой частицы будет искать эксперимент KATRIN, изучающий радиоактивный распад трития, тяжелого изотопа водорода, в Технологическом институте Карлсруэ, Германия.

Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.

Стерильные нейтрино, которые еще более массивны, в триллион раз тяжелее электрона, могли бы объяснить невероятную космическую загадку — несоответствие количеств вещества и антивещества в космосе. Обладая энергией, которая хотя бы в миллион раз будет больше той, которую способен производить Большой адронный коллайдер, мощнейший в мире ускоритель частиц, сверхтяжелое стерильное нейтрино в юной Вселенной могло сделать немного больше материи, чем антиматерии. Со временем этот крошечный дисбаланс был воспроизведен в бесчисленных ядерных реакциях, что и привело к преобладанию материи над антиматерией в нашей современной Вселенной.

«Для космологии, стерильные нейтрино, о которых идет речь, вряд ли смогут решить проблему асимметрии материи-антиматерии, но вполне вероятно, что окажутся связанными с другими новыми частицами, которые могут решить эту проблему».

Ученые видят другую, более практичную выгоду в изучении нейтрино. Записывая выходной сигнал антинейтрино из ядерных реакторов, детекторы могут определить относительные количества плутония и урана, сырья для изготовления ядерного оружия. Каждый грамм плутония и урана в процессе деления ставит определенный отпечаток на энергию и скорость производства антинейтрино, говорит физик Адам Бернштейн из Ливерморской национальной лаборатории в Калифорнии. Детекторы способны наблюдать за ядерной активностью с расстояния в несколько сотен километров, но это потребует дополнительных исследований. Сейчас же их диапазон действия составляет от 10 до 500 метров.

Новый комментарий

Для отправки комментария вы должны или