#чтиво | Энтропия растет с течением времени или создает его?

Илья Хель

Сегодня мы вернемся к термодинамике. Попробуем понять, почему хаос так важен и может ли он объяснить загадку, как работает время. Обычно мы говорим о космологии, теории относительности, квантовой механике, физике частиц и другом, но что плохого в том, чтобы на миг нырнуть в 19 век в объятья старомодной термодинамики? Термодинамика не так уж плоха: она помогла осуществить промышленную революцию и в конечном итоге будет ответственна за смерть вселенной. Она заслуживает вашего уважения.

Сальвадор Дали

Вопрос будет следующим:

«Допустим, энтропия — это мера беспорядка объектов. Но что в ней такого важного, что она должна быть законом?».

Если вы посмотрите почти на все законы физики, время будет течь почти с опозданием. Сделайте фильм из столкновения двух электронов, а потом запустите фильм в обратном порядке, и вторая версия будет выглядеть так же нормально и физически достоверно, как и первый вариант. На микроскопическом уровне время кажется практически симметричным. Потому что, как мы писали, на этом уровне не работает привычная нам термодинамика.

На макроскопическом уровне все совершенно иначе. Вы не помните будущее, например, не можете склеить яйцо или разделить коктейль на составляющие. И говоря о возможности путешествий во времени, мы подразумеваем только одну стрелу времени, один вектор, одно направление: вперед.

Есть один общий знаменатель, отличающий будущее от прошлого: все запутывается. Вы знаете это как «второй закон термодинамики». Или не знаете. Мне все равно.

Второй закон гласит, буквально, что все разваливается, или что вещи становятся все более и более хаотичными и беспорядочными со временем, но это не совсем так. Правильно так: полная энтропия замкнутой системы возрастает со временем. Энтропия является мерой числа способов, которыми вы можете переворачивать вещи с ног на голову и сохранять все макроскопические величины неизменными.

Весьма школьный пример

Энтропия

На примере все станет понятным. Допустим, у вас было три молекулы воздуха и вы поместили их в левой части коробки. Это очень аккуратный способ организовать вещи. Позвольте природе сделать свое дело — и молекулы разлетятся в разные стороны, и каждая из них проведет половину своего времени в правой части коробки, и другую половину — в левой части.

В любой момент времени вы будете видеть случайный снимок трех молекул. Есть восемь разных путей организовать молекулы, но только два из них (ЛЛЛ, ППП) разместят все три молекулы в одной части контейнера. Это всего лишь 25 % вероятности. В остальное время атомы, скорее всего, будут распределены равномерно. И равномерное распределение — это более высокое состояние энтропии, чем концентрированное.

Вы можете играть в эту же игру, набрав полную ладонь монет и подбрасывая их в воздух. Орел и решка — это правая и левая часть коробки, и наоборот. Проделайте этот жест несколько раз и увидите, что молекулы почти всегда равномерно распределяются.

Большие числа превращают вероятность в закон

Если вы увеличите число молекул воздуха, к примеру, до 1026 или выше, вероятность подсказывает, что случайные движения в итоге распределят молекулы «равномерно». Благодаря квантовой механике, случайность становится принципиальной составляющей всего этого. То есть, поскольку есть техническая вероятность того, что все молекулы воздуха внезапно покинут вашу спальню, пока вы спите, за несколько минут, это явно не то, чего стоит бояться ночью.

Растущая энтропия — на самом деле закон, поскольку во Вселенной так много частиц, что вероятность того, что все они спонтанно выстроятся в состояние низкой энтропии, ошеломляюще мала. Этот же тип случайно работает в отношении азартных игр и прогнозирования погоды.

Ну или еще пример. Вам выпадает решка два раза подряд, и вы совсем не удивляетесь этому. Но если кому-то решка выпадает сто раз кряду, это становится подозрительным. Чтобы оценить масштаб такого события, представьте себе: если вы будете подбрасывать монетку 10 раз в секунду, у вас уйдет времени в триллион раз больше нынешнего возраста вселенной, прежде чем вы дождетесь результата. Грубо говоря, в определенный момент система становится настолько большой, что шанс на то, что энтропия будет уменьшаться, не просто мал, но крайне близок к нулю. Поэтому мы называем это «вторым законом».

Креационисты среди вас могут использовать это как доказательство, что сложные вещи (вроде людей или динозавров) никогда не смогли бы сформироваться. В конце концов, вы ведь высоко упорядоченный человек, стоит полагать. Если вы облако газа, примите мои извинения. Но если предположить, что вы человек, нет ничего странного в том, что вы существуете как маленький шанс высокого порядка.

Суть правила в том, что энтропия растет во всей вселенной. Например, если вы сделаете хорошенький холодильник, полный холодного воздуха, вы сделаете это за счет высокой энтропии горячего воздуха. Вот почему кондиционер нуждается в выхлопе, а обогреватель — нет. По этой же причине вы не можете построить вечный двигатель. Часть энергии всегда будет преобразовываться в тепло.

Энтропия непрерывно увеличивается со временем. Вы сидите в горячей ванне в прохладной комнате, чувствуете себя тепло и уютно, но потом события начинают принимать угрожающий поворот: вода в номере по температуре приближается к воздуху, вам становится холодно, вас атакуют мурашки.

То же самое касается будущего Вселенной. С течением времени тепло равномерно распределится во Вселенной. Звезды выгорят, черные дыры испарятся, станет темно и холодно. Бум.

Время и второй закон

Энтропия

Физики постоянно спорят на тему того, работает ли второй закон термодинамики наоборот. Другими словами, определяется ли течение времени увеличением энтропии во Вселенной? Шон Кэрролл написал очень интересную книгу на эту тему. Стивен Хокинг лихо связывал «психологическое время», способ нашего запоминания вещей, с «энтропийным временем». Другими словами, если поток энтропии обратить вспять, время будет течь в обратном направлении.

Одной из причин, почему вообще эти идеи набирают обороты, является загадка наблюдателя. Юная вселенная, судя по всему, находилась в состоянии высокого порядка, но нет никаких фундаментальных причин, почему это должно быть так. Вселенная, созданная сразу после Большого Взрыва, должна была бы находиться в состоянии полного хаоса, но вместо этого она была невероятно упорядоченной. Гравитационная система высокой энтропии свернулась в комки (произведя звезды, галактики и черные дыры), но вселенная была гладкой. Почему?

Другие заходят еще дальше. Эрик Верлинде, например, утверждает, что такие явления, как гравитация, вытекают из второго закона термодинамики (и теории струн). Стоит отметить, что интересных идей много. Многие говорят, что время заставляет энтропию расти, но не энтропия порождает время. Для кого-то энтропия это просто то, что происходит.

Или должно произойти с высокой вероятностью.