«Интернет вещей» не будет работать без искусственного интеллекта

16 Ноября 2014 в 22:00, Илья Хель 4

Носимые технологии

По мере того как «Интернет вещей» набирает популярность в мире технологий и самых громких технологических словечек года, разгорается дискуссия о том, как заставить его работать. Интернет вещей будет производить большой объем данных — данных, которые помогут городам прогнозировать аварийные ситуации и преступления; будут давать врачам информацию в режиме реального времени, полученную от кардиостимуляторов или биочипов; оптимизировать производительность в различных отраслях; обеспечивать важную связь между самоуправляемыми автомобилями; обеспечивать работу умных домов с подключенной бытовой техникой.

Возможности, которые открывает Интернет вещей, воистину безграничны. Но есть вопросы.

По мере того как продолжается расширение числа устройств и датчиков, подключенных к Интернету вещей, объем данных растет до умопомрачительных уровней. Эти данные содержат ценную информацию — что работает хорошо, а что нет — указывают на конфликты и открывают глаза на новые возможности и связи в разных сегментах.


Звучит здорово. Но большой проблемой остается поиск путей анализа этого потопа данных. Если вы когда-нибудь пытались найти связь в терабайтах машинных данных, вы знаете, как это сложно. Люди просто не в состоянии изучать и понять все эти данные — и с традиционными методами, если даже вы сокращаете размер выборки, на это уходит слишком много времени.

Чтобы Интернет вещей сложился, как и обещал, нужно увеличить скорость и точность анализа крупных объемов данных. Если этого сделать не удастся, последствия могут быть катастрофическими, от раздражения — когда бытовая техника не работает вместе, как планировалось — до угрозы жизни — когда сотни автомобилей ведут себя не по плану.

Единственный способ идти в ногу с объемами генерируемых Интернетом вещей данных — это включить в них скрытое понимание с помощью машинного обучения.

Машинное обучение уже используется

Машинное обучение — это «субполе компьютерной науки и искусственного интеллекта, которое занимается строительством и изучением систем, которые могут анализировать данные не только по заранее запрограммированным инструкциям».

Хотя звучит такое определение как научная фантастика, в повседневной жизни оно уже присутствует. Pandora использует машинное обучение, чтобы определить, какие еще песни вам могут понравиться; Amazon.com делает то же самое с книгами и фильмами. Обе системы построены на том, что узнают о пользователе и уточняют со временем, узнавая все больше и больше об их поведении.

В случае с Интернетом вещей, машинное обучение поможет компаниям взять миллиарды точек данных и сварить из них что-то осмысленное. Общий принцип довольно простой: нужно просматривать и анализировать собранные данные в поиске шаблонов или сходств, из которых можно что-то извлечь с последующим принятием лучших решений.

К примеру, носимые устройства, которые отслеживают ваше здоровье, пока являются частью развивающейся индустрии — но вскоре они станут устройствами, которые связаны между собой и с Интернетом, будут обеспечивать наблюдение за вашим здоровьем в режиме реального времени.

Цель состоит в том, что ваш врач будет получать уведомления при соблюдении определенных условий — ваш пульс увеличивается до небезопасного уровня или даже останавливается, к примеру. Чтобы уметь выявлять потенциальные проблемы, данные нужно анализировать с точки зрения того, что нормально, а что нет. Сходства, корреляции и отклонения должны быстро выявляться на основе потоков данных в реальном времени. Может ли это делать физически человек? Просматривать данные тысяч пациентов в режиме реального времени и точно определять, когда нужно высылать неотложку? Вряд ли.

Чтобы анализировать данные сразу после сбора, точно определяя новые и уже известные паттерны поведения, машины также должны знать нормальное поведение каждого пациента, а также — критический уровень поведения здоровья.

Реализация Интернета вещей зависит от того, получится ли проникнуть в суть, скрытую в увеличивающемся море имеющихся данных. Поскольку в настоящее время подходы не масштабируются до объемов Интернета вещей, его будущее зависит исключительно от машинного обучения, которое сможет находить паттерны, корреляции и аномалии в данных. Если удастся, это улучшит практически все аспекты нашей повседневной жизни.

«Интернет вещей» не будет работать без искусственного интеллекта

4 комментария Оставить свой

  1. GrinJ

    Над созданием этих систем трудятся десятки тысяч людей. Гугл уже много лет предсказывает что тебе нужно, так что и здесь научатся.

  2. storm X

    Ну конечно, не будет! Электогитара тоже без подачи тока не будет фурычить, а конвейер без производственной ленты-транспортера

  3. GrinJ

    GrinJ, apple научила телефон и компьютер обмениваться данными. Небольшой гаг, но все же. Три года назад голосовые помощники были мало на что способны, а сейчас штуковина от амазон способна, кажется, на все. Надо подождать пару лет все будет

  4. Trev

    Watson'a на них не хватает

Новый комментарий

Для отправки комментария вы должны авторизоваться или зарегистрироваться.