Руководство по терраформированию

Терраформирование. Вы наверняка слышали это слово в контексте какой-нибудь фантастической истории или встречали на сайте Hi-News.ru. Тем не менее в последние годы, благодаря подъему интереса к освоению космоса, о концепции терраформирования начали задумываться все чаще. Уже не как об отдаленной перспективе, а как о вполне реальном ближайшем будущем.

Терраформирование планет может быть очень важным.

Часть первая: Внутренняя Солнечная система

В рассказе Роджера Желязны «Ключи к декабрю» модифицированные (пушистые) представители человеческой (или уже не человеческой) расы отправляются на планету, чтобы погрузиться в переменный анабиоз в бункерах на ее поверхности, пока в течение тысяч лет будут работать устройства терраформирования, опускающие температуру на поверхности ниже нуля — как нужно этим существам. Так начинается их история. Никто пока не знает, с чего начнется история нашего — настоящего — человечества, которое пожелало превратить какую-нибудь планетку в уютный мирок, пригодный для жизни. Никто не знает, будем мы поднимать температуру на планете или опускать ее. Кроме, наверное, нескольких людей и организаций.

Когда Элон Маск утверждает, что человечеству нужно «резервное копирование», чтобы выжить; когда частные компании вроде Mars One планируют отправить людей в один конец — колонизировать Красную планету; когда космические агентства, NASA или ESA, обсуждают перспективу долговременного проживания на Марсе или Луне — тогда терраформирование становится научным фактом.

Как пыльные вихри помогают марсоходам лучше работать?

Но что такое это терраформирование? Где мы могли бы использовать этот процесс? Какого рода технологии нам нужны? Существуют ли они или нам придется подождать? Сколько ресурсов потребует терраформирование? И самое главное: каковы шансы на успех? Чтобы ответить на все эти вопросы, придется копнуть глубже. Начнем с того, что терраформирование не только почтенное понятие, но и вполне используемое людьми.

Что такое терраформирование?

Терраформирование — это процесс, который меняет недружелюбную окружающую среду (если планета слишком холодная, слишком горячая, не имеет пригодной для дыхания атмосферы) на более подходящую для жизни людей. Он может включать изменение температуры, атмосферы, топографии поверхности, экологии — или всего вышеперечисленного — чтобы планета или луна стала более «приземленной» и не убила нас моментально.

Красавица Венера.

Этот термин придумал Джек Уильямсон, американский писатель-фантаст, которого называли «деканом научной фантастики» (после смерти Роберта Хайнлайна в 1988 году). Термин появился в истории под названием «Орбита столкновения», опубликованной в 1942 году в журнале Astounding Science Fiction. Это первое из известных упоминаний этой концепции, хотя косвенно о ней говорили и раньше, конечно.

Вообще, научная фантастика полна примеров изменения планетарных условий, чтобы те стали более пригодными для жизни людей. В «Войне миров» Герберт Уэллс отмечал, что марсианские вторженцы начали трансформировать экологию Земли с целью долгосрочного проживания.

Олаф Стэплдон в «Последних и первых людях» (1930) посвятил две главы описанию того, как потомки людей терраформируют Венеру по причине непригодности Земли для проживания; и в процессе терраформирования устраивают геноцид местной водной жизни. В 50-60-х годах, вместе с началом космической эпохи, терраформирование появилось во множестве работ из области научной фантастики.

Юпитер

Юпитер важнее, чем кажется.

К примеру, в «Небесном фермере» (1950) Роберт Хайнлайн представляет, как Ганимед трансформируется в сельскохозяйственное поселение. Это важный роман — первый, где понятие терраформирование представляется с серьезной и научной точки зрения, а не просто как фантазия.

В 1951 году Артур Кларк написал первый роман, в котором представил научной фантастике терраформирование Марса. В «Песках Марса» марсианские колонисты нагрели планету, превратив Фобос во второе солнце, и выращивали растения, которые разбивали марсианские пески с высвобождением кислорода. А в книге «Космическая Одиссея 2001 года» Кларк представил расу древних существ, которые превращают Юпитер во второе солнце, чтобы Европа смогла стать пригодной для жизни планетой.

Где сейчас находится марсоход Perseverance? Проверьте сами

Пол Андерсон тоже много писал о терраформировании в 1950-х. В своем романе 1954 года «Большой дождь» Венеру меняют с помощью методов планетарной инженерии в течение очень долгого времени. Книга стала настолько влиятельной, что термин «Большой дождь» (Big Rain) стал синонимом терраформирования Венеры. За этой книгой последовали «Снега Ганимеда» (1958), где экологию спутника Юпитера делают пригодной для жизни с помощью похожего процесса.

Робот

Знаменитая серия книг.

В серии «Робот» Айзека Азимова колонизацией и терраформированием занимается могущественная раса людей; этот процесс протекает на пятидесяти планетах известной Вселенной. В серии «Основание» человечество успешно колонизировало все потенциально обитаемые планеты в галактике и терраформировало их для Галактической Империи.

В 1984 году Джеймс Лавлок и Майкл Олэби написали, как считают многие, одну из самых влиятельных книг по терраформированию. В романе «Озеленение Марса» исследуется формирование и эволюция планет, происхождение жизни и биосфера Земли. Модели терраформирования, представленные в этой книге, фактически предвосхищают будущие дебаты на тему целей терраформирования.

В 1990-х Ким Стэнли Робинсон выпустил свою знаменитую трилогию на тему терраформирования Марса. Известная как «Трилогия Марса» — Красный Марс, Зеленый Марс, Голубой Марс — эта серия посвящена трансформации Марса силами многих поколений в процветающую человеческую цивилизацию. В 2012 году вышел «2312», посвященный колонизации Солнечной системы — включая терраформирование Венеры и других планет.

В популярной культуре можно найти множество других примеров, как в телевидении и прессе, так и в фильмах с видеоиграми.

Наука терраформирования

В статье, опубликованной в журнале Science в 1961 году, известный астроном Карл Саган предложил использовать методы планетарной инженерии для трансформации Венеры. Они включали засеивание атмосферы Венеры водорослями, которые могли бы преобразовывать воду, азот и диоксид углерода в органические компоненты и уменьшить нарастающий парниковый эффект Венеры.

В облаках Венеры могут быть микробы и ученые знают, как они там появились

В 1973 году он опубликовал статью в журнале Icarus под названием «Планетарная инженерия на Марсе», в которой предложил два сценария трансформации Марса. Они включали перевозку материала с низким альбедо и/или высадку темных растений на полярных шапках, чтобы те поглощали больше тепла, растаяли и превратили планету в более похожую по условиям на Землю.

В 1976 году NASA официально рассмотрело вопрос планетарной инженерии в исследовании «Об обитаемости Марса: подход к планетарному экосинтезу». В исследовании был сделан вывод, что фотосинтезирующие организмы, таяние полярных льдов, а также введение парниковых газов может быть использовано для создания более теплой, богатой кислородом и озоном атмосферы. Первое заседание конференции на тему «планетарного моделирования» было организовано в том же году.

Марс в будущем

Таким Марс может быть

Затем, в марте 1979 года, инженер NASA Джеймс Оберг организовал Первый коллоквиум по терраформированию — спецзаседание на 10-й конференции луно- и планетологии, которая ежегодно проводится в Хьюстоне, штат Техас. В 1981 году Оберг популяризовал концепции, которые обсуждались на коллоквиуме, из его книги «Новые Земли: реструктуризация Земли и других планет».

В 1982 году планетолог Кристофер Маккей написал «Терраформирование Марса», работу в журнале Британского межпланетного общества. В работе Маккей обсудил перспективы саморегулирующейся марсианской биосферы, которые включали необходимые методы и вопросы этики. Впервые слово «терраформирование» использовалось в заголовке печатной статьи и с тех пор стало расхожим термином.

Илон Маск собрал учёных на секретную конференцию, чтобы обсудить высадку на Марс

За ней последовало «Озеленение Марса» Джеймса Лавлока и Майкла Олэби в 1984 году. В этой книге впервые описали новаторский метод утепления Марса за счет добавления хлорфторуглеродов (ХФУ) в атмосферу с целью вызвать глобальное потепление. Книга побудила биофизика Роберта Хейнса начать продвижение терраформирования в рамках более широкой концепции Ecopoiesis.

Происходящее от греческих слов «ойкос» (дом) и «пойезис» (производство), это слово означает рождение экосистемы. В контексте освоения космоса, оно включает форму планетарной инженерии, в которой устойчивая экосистема образуется на стерильной до этого планете. Как описал Хейнс, все начинается с засеивания планеты микробной жизнью, что приводит к условиям, близким к первобытной Земле. Затем импортируется растительная жизнь, которая ускоряет производство кислорода, а после и животная жизнь.

Терраформирование

На словах и картинках все просто.

В 2009 году Кеннет Рой — инженер Министерства энергетики США — представил свою концепцию «Мира под щитом» в журнале Британских межпланетных наук. Работа «Миры под щитом — подход к терраформированию лун, малых планет и плутоидов» изучает возможность использования крупных оболочек, щитов, которые накрывают чужой мир, сохраняя его атмосферу достаточно долго, чтобы долговременные изменения пустили корни.

Эти и другие идеи, в которых мир накрывается искусственной оболочкой для трансформации его среды, называются «паратерраформированием».

Возможные места для терраформирования

В Солнечной системе существует несколько возможных мест, которые могли бы хорошо подойти для терраформирования. Помимо Земли, Венера и Марс также лежат в пределах потенциально обитаемой зоны Солнца (так называемой зоны Златовласки). Однако из-за нарастающего парникового эффекта Венеры и отсутствия магнитосферы на Марсе, их атмосферы слишком плотные и горячие, либо тонкие и холодные, чтобы поддерживать известную нам жизнь. Тем не менее теоретически это можно изменить, используя правильный вид экологической инженерии.

Другие возможные места в Солнечной системе включают несколько спутников, которые вращаются вокруг газовых гигантов. Несколько спутников Юпитера и Сатурна изобилуют водным льдом, и ученые допускают, что при повышении температуры поверхности можно создать вполне себе жизнеспособную атмосферу — за счет электролиза и введения буферных газов.

Марс

Существует даже предположение, что Меркурий и Луну (или по крайней мере их части) можно терраформировать и создать на них вполне пригодное для жизни человеческое поселение. В таких случаях терраформирование потребует не только изменение поверхности, но и, возможно, изменение их вращения. В конце концов, каждый случай имеет собственные преимущества, недостатки и вероятность успеха. Давайте рассмотрим их в порядке удаленности от Солнца.

Существует даже предположение, что Меркурий и Луну (или по крайней мере их части) можно терраформировать и создать на них вполне пригодное для жизни человеческое поселение. В таких случаях терраформирование потребует не только изменение поверхности, но и, возможно, изменение их вращения. В конце концов, каждый случай имеет собственные преимущества, недостатки и вероятность успеха. Давайте рассмотрим их в порядке удаленности от Солнца.

Особенности внутренней Солнечной системы

Планеты земного типа в нашей Солнечной системе представляют собой лучшие варианты для терраформирования. Не только потому, что расположены ближе к нашему Солнцу, а следовательно, и лучше поглощают его энергию, но и потому, что богаты силикатами и минералами — которые понадобятся любой будущей колонии для выращивания еды и построения поселений. И, как уже упоминалось, две такие планеты (Венера и Марс) расположены в пределах потенциально обитаемой зоны.

Как выглядел Марс миллионы лет назад? Новая теория

Меркурий

Большая часть поверхности Меркурия непригодна для жизни, поскольку температура колеблется между очень горячей и очень холодной (от 427 градусов до -173 градусов по Цельсию). Связано это с близостью к Солнцу, почти полным отсутствием атмосферы и очень медленным вращением небесного тела. Однако на полюсах температура относительно низкая (-93 градуса) из-за постоянного их затемнения.

Меркурий

Надо учитывать очень много факторов.

Наличие водяного льда и органических молекул в северной полярной области также было подтверждено, благодаря данным миссии MESSENGER. Колонии можно построить в этих регионах, осуществив частичное терраформирование (паратерраформирование). Если построить купола (или один купол) достаточных размеров над кратерами Кандинского, Прокофьева, Толкиена и Триггвадоттир, северную область можно приспособить для человеческого проживания.

Теоретически это можно сделать, используя зеркала для отражения солнечного света на купола — это постепенно повысит температуру. Водяной лед растает, а в сочетании с органическими молекулами и мелким песком образует почву. На этой почве можно выращивать растения для производства кислорода, который в сочетании с азотом может дать пригодную для дыхания атмосферу.

Венера

Венера — «близнец Земли», только злой и горячий, но и он представляет массу возможностей для терраформирования. Первое предложение сделал Саган в статье в Science 1961 года. Но последующие открытия — вроде высокой концентрации серной кислоты в облаках Венеры — сделали эту идею нежизнеспособной. Даже если водоросли смогли бы выжить в такой атмосфере, преобразование плотнейших облаков из углекислого газа в кислород приведет к сверхплотной кислородной среде.

Венера

Когда планета станет такой, изменится многое.

Кроме того, побочным продуктом химических реакций станет графит, который выпадет густым порошком на поверхности. В процессе сгорания он снова станет углекислым газом, перезапустив весь парниковый эффект. Однако позднее были сделаны предложения использовать методы поглощения углерода, которые, возможно, гораздо более практичны.

В этих случаях химические реакции должны преобразовать атмосферу Венеры в нечто пригодное для дыхания, снизив при этом ее плотность. Один из вариантов — ввести аэрозоль из водорода и железа, чтобы превратить углекислород в атмосфере в графит и воду. Вода выпадет на поверхность, где покроет 80% планеты — поскольку Венера имеет незначительные перепады высоты.

Космос

Космос — это инструмент.

Другой сценарий предусматривает введение огромного количества кальция и магния в атмосферу. Углерод будет поглощен и образует кальциевые и магниевые карбониты. Преимущество такого плана заключается в том, что на Венере уже имеются отложения обоих минералов в мантии — их можно было бы вытащить в атмосферу за счет бурения. И все же большую часть минералов придется брать не на планете, чтобы снизить температуру и давление до необходимого уровня.

Еще одно предложение — заморозить атмосферный углекислый газ до точки сжижения — с образованием сухого льда — и позволить ему скопиться на поверхности. Оказавшись там, он может быть закопан и будет оставаться в твердом состоянии из-за давления. Его можно будет даже добывать для использования на планете и за ее пределами. Затем можно будет обрушить на поверхность кометы с водным льдом (например, добытые на одной из лун Юпитера или Сатурна), чтобы создать жидкие океаны на поверхности, которые будут поглощать углерод и способствовать реализации общего плана.

Чем займется марсоход Perseverance и как он будет добывать кислород на Марсе

Наконец, есть сценарий, в котором плотную атмосферу Венеры можно убрать. Это прямой подход к истончению атмосферы, которая является слишком плотной для человеческой деятельности. Сталкивая большие кометы или астероиды на поверхность, можно выбросить плотные облака CO2 в космос, и останется меньше атмосферы, которую необходимо преобразовать.

Более медленный метод включает использование электромагнитных катапульт или космических лифтов, которые будут постепенно зачерпывать атмосферу и поднимать ее в космос либо запускать прочь от поверхности. Можно также снизить тепло и давление, ограничивая солнечный свет либо изменяя скорость вращения планеты.

Солнечное затемнение включает использование серии небольших космических аппаратов или одной большой линзы, которая будет отражать свет от поверхности планеты, снижая глобальную температуру. Для Венеры, которая поглощает в два раза больше солнечного света, чем Земля, излучение светила играет крупную роль в поддержании парникового эффекта, который мы наблюдаем сегодня.

Такая тень может быть космической, расположенной в точке Лагранжа L1 (Солнце – Венера), в которой не только будет препятствовать достижению солнечного света Венеры, но и снизит количество излучения, воздействию которого подвергается планета. С другой стороны, солнечные отражатели можно разместить в атмосфере или на поверхности. Их можно делать из больших отражающих воздушных шаров, листов углеродных нанотрубок, графена или материала с низким альбедо.

Размещение генераторов тени или отражателей в атмосфере имеет два примущества: во-первых, атмосферные отражатели можно построить на месте, используя собранный на Венере углерод. Во-вторых, атмосфера Венеры достаточно плотная, чтобы такие структуры легко плавали над облаками. Однако материала должно быть много и он должен оставаться на месте, когда атмосферу модифицируют. Помимо этого, поскольку у облаков Венеры весьма высокая отражательная способность, любой подход должен будет значительно преодолеть текущее альбедо Венеры (0,65), чтобы рассчитывать на результаты.

SpaceX, подвинься: зачем ОАЭ понадобилось лететь на Марс?

Предлагают также ускорить вращение Венеры. Если Венера будет вращаться быстрее и ее цикл дня и ночи сравняется с земным, планета начнет вырабатывать мощное магнитное поле. Оно снизит объем солнечного ветра (и излучения), попадающего на поверхность, сделав ее безопасней для земных организмов.

Луна

Колонизировать Луну, как ближайшее к Земле небесное тело, будет относительно легко, если сравнивать с другими телами. Но когда дело доходит до терраформирования Луны, возможности и проблемы очень схожи с Меркурием. Во-первых, атмосфера Луны настолько тонкая, что ее можно считать экзосферой. Кроме того, летучих элементов, необходимых для жизни, чрезвычайно мало (водорода, азота, углерода).

Луна

Эти проблемы можно решить путем захвата комет, которые содержат водные льды и летучие вещества, и сталкивания их на поверхность. Кометы сублимируют, рассеивая газы и водный пар, чтобы создать атмосферу. Эти столкновения также высвободят воду, которая содержится в лунном реголите и в конечном счете соберется на поверхности с образованием естественных водоемов.

Эти проблемы можно решить путем захвата комет, которые содержат водные льды и летучие вещества, и сталкивания их на поверхность. Кометы сублимируют, рассеивая газы и водный пар, чтобы создать атмосферу. Эти столкновения также высвободят воду, которая содержится в лунном реголите и в конечном счете соберется на поверхности с образованием естественных водоемов.

Передача импульса от этих комет также ускорит вращение Луны и та больше не будет приливно заблокирована. Ускорение вращения Луны позволит создать 24-часовой суточный цикл, который, в свою очередь, упростит колонизацию и адаптацию к жизни на Луне.

Самые необычные природные явления на Марсе

Есть также возможность паратерраформирования частей Луны способом, который напоминает терраформирования полярного региона Меркурия. В случае Луны, это пройдет в кратере Шеклтон, где ученые нашли водный лед. Используя зеркала и купол, можно превратить этот кратер в место с микроклиматом, подходящим для выращивания растений и создания пригодной для дыхания атмосферы.

Марс

Марс — самое популярное место в обсуждениях терраформирования. Тому есть несколько причин, начиная его близостью к Земле, схожестью с Землей и тем фактом, что однажды его окружающая среда была очень похожа на земную — с плотной атмосферой и теплой водой, текущей на поверхности. В настоящее время считают, что Марс имеет также дополнительные источники воды под его поверхностью.

Если коротко, Марс имеет суточные и сезонные циклы, которые очень близки к тем, что мы испытываем здесь, на Земле. Во-первых, один день на Марсе длится 24 часа и 40 минут. Во-вторых, из-за похожей по наклону на нашу оси Марса (25,19 градуса по сравнению с земными 23), Марс испытывает смены времен года, которые очень похожи на земные. Хотя один сезон на Марсе длится примерно в два раза дольше, изменение температур очень похоже.

Марс

Большая разница.

И все же Марсу потребуется мощное преобразование, чтобы люди могли жить на его поверхности. Атмосферу придется кардинально уплотнить, а ее состав — изменить. В настоящее время атмосфера Марса состоит на 96% из углекислого газа, на 1,93% из аргона и на 1,89% из азота, а давление воздуха эквивалентно всего 1% от земного на уровне моря.

Помимо этого, Марсу недостает магнитосферы, а это значит, что его поверхность получает намного больше излучения, чем мы на Земле. Считается, что когда-то у Марса была магнитосфера и ее исчезновение привело к тому, что солнечный ветер унес с собой атмосферу Марса. По этой причине, собственно, Марс стал холодным и сухим местом.

В конечном счете это означает, что если мы хотим сделать планету жилой по меркам людей, ее атмосферу придется значительно уплотнить, а планету — значительно нагреть. Состав атмосферы нужно изменить, превратить из нынешней тяжелой смеси углекислого газа до азотно-кислородного баланса 70 на 30. Атмосферу также постоянно пополнять, чтобы компенсировать потери.

К счастью, первые три требования вполне выполнимы, причем самыми разными способами. Во-первых, атмосферу Марса можно уплотнить, а планету нагреть, бомбардируя ее полярные регионы метеорами. Полюса расплавятся, выпустят запасы замороженного углекислорода и воды в атмосферу, тем самым вызвав парниковый эффект.

Где на Марсе могут жить люди?

Введение летучих элементов, аммиака и метана поможет сгустить атмосферу и вызвать потепление. Оба вещества можно добыть на ледяных лунах внешней Солнечной системы — Ганимед, Каллисто, Титан. И тоже доставить на поверхность с помощью метеоритных ударов.

После столкновения с поверхностью аммиачный лед сублимирует и распадется на водород и азот — водород провзаимодействует с углекислым газом с образованием воды и графита, а азот выступит буферным газом. Метан между тем сыграет роль парникового газа, который усилит дальнейшее глобальное потепление. Столкновения также поднимут тонны пыли в воздух, которая будет способствовать дальнейшему потеплению.

Со временем обильные запасы марсианского водяного льда — которые можно найти не только на полюсах, но и в огромных подземных отложениях вечной мерзлоты — сублимируют с образованием воды, текущей воды. А с повышением атмосферного давления и потеплением атмосферы люди смогут жить на поверхности, не нуждаясь в сдавливающих скафандрах.

Осталось превратить атмосферу в что-то пригодное для дыхания. На это уйдет больше времени, и процесс превращения атмосферного углекислорода в кислород займет сотни лет. В любом случае варианты имеются и на этот счет, например, преобразовать атмосферу в процессе фотосинтеза — с помощью цианобактерий или земных растений с лишайниками.

Другие предложения включают строительство орбитальных зеркал, которые будут размещены близ полюсов, и направления прямого света на поверхность, чтобы вызвать цикл потепления, таяния полярных шапок и высвобождения их углекислого газа. Используя темную пыль с Фобоса и Деймоса для снижения альбедо поверхности, можно повысить уровень поглощения солнечного света.

Что-что, а как терраформировать Марс — мы уже примерно знаем. Правда, эти варианты будут доступны не завтра и не через год. Но они имеются.

Часть вторая: Внешняя Солнечная система

В то же время многие из лун содержат множество других необходимых ингредиентов для функционирования экосистем, вроде замороженных летучих веществ — аммиака и метана. По этой причине и в рамках нашего непрекращающегося желания освоить дальние уголки Солнечной системы, многие предлагают направить на эти спутники исследовательские станции, отстроить базы. Некоторые планы включают возможное терраформирование, чтобы сделать их пригодными для проживания в долгосрочной перспективе.

Солнечная система

Спутники Юпитера

Крупнейшие спутники Юпитера, Ио, Европа, Ганимед и Каллисто — известные также как галилеевы в честь своего первооткрывателя (Галилео Галилея) — давно являются предметом научного интереса. Десятилетиями ученые обсуждают возможное существование подземных океанов на Европе, основываясь на теориях о приливном нагреве планеты (вследствие эксцентричной орбиты и орбитального резонанса с другими лунами).

Анализ изображений, полученных «Вояджером-1» и зондом «Галилей», добавил веса этой теории, показав регионы, которые, казалось, расплавил подземный океан. Более того, наличие тепловодного океана также привело к обсуждению возможности существования жизни под ледяной корой Европы — возможно, рядом с гидротермальными источниками на границе ядра и мантии.

Из-за потенциала обитаемости Европу также называют возможным местом для терраформирования. Если поднять температуру поверхности и расплавить лед на поверхности, вся планета может стать сплошным океаном. Сублимация льдов, которая выпустит водный лед и летучие газы, может стать предметом электролиза (который произведет тонкую атмосферу из кислорода).

Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.

Однако у Европы нет собственной магнитосферы, и она лежит в пределах действия мощного магнитного поля Юпитера. В результате этого поверхность подвергается мощному облучению — 540 бэр излучения ежедневно (сравните это с 0,0030 бэра в год на Земле) — и любая созданная атмосфера будет сдута напрочь Юпитером, поэтому придется сначала создать радиационный щит, который мог бы отражать большую часть радиации.

Ганимед

Вот такая структура

Еще есть Ганимед, третья по удаленности галилеева луна Юпитера. Подобно Европе, Ганимед обладает мощным потенциалом для терраформирования и представляет множество преимуществ. С одной стороны, это самый большой спутник в нашей Солнечной системе, больше нашей Луны и даже больше Меркурия. Кроме того, он обладает большими запасами водяного льда и, как полагают, имеет внутренний океан, а также собственную магнитосферу.

Следовательно, если увеличить температуру поверхности и сублимировать лед, атмосфера Ганимеда уплотнится. Как и Европа, он тоже станет планетой с океаном, и его собственная магнитосфера позволит удерживать атмосферу. Однако магнитное поле Юпитера по-прежнему оказывает сильное влияние на планету, а значит потребуется радиационная защита.

Наконец, есть Каллисто, четвертый по удаленности галилеев спутник. На нем тоже много воды, льда, летучих веществ, возможно существование подземного океана и даже жизни. Но в случае с Каллисто есть бонус — спутник лежит за пределами магнитного поля Юпитера, что уменьшает угрозу радиации и потери атмосферы.

Процесс начнется с нагрева поверхности, что сублимирует водные льды и запасы замороженного аммиака на Каллисто. Электролиз этих океанов приведет к образованию богатой кислородом атмосферы, а аммиак может быть преобразован в азот, который выступит в качестве буферного газа. Однако, учитывая объемы льдов Каллисто, нагрев будет означать потерю существенной массы Каллисто — возможно, у спутника не будет континентов. Получится планета-океан, на которой разве что строить плавучие города или массивные колониальные корабли.

Как стать астронавтом NASA для полета на Луну и Марс?

Спутники Сатурна

Как и спутники Юпитера, спутники Сатурна представляют возможности для терраформирования. Опять же, из-за наличия водяного льда, внутренних океанов и летучих элементов. Титан, крупнейший спутник Сатурна, также изобилует метаном в жидкой форме (в форме метановых озер в северном регионе) и в газообразной — в атмосфере. Гигантские запасы аммиака предполагаются в наличии под ледяной поверхностью.

Титан — единственный природный спутник, обладающий плотной атмосферой (в полтора раза превышающей в давлении земную), и единственное тело за пределами Земли, атмосфера которого богата азотом. Толстая атмосфера означает, что было бы куда проще стабилизировать давление для жизни на этой планете (для удобства назовем Титан так — нам ведь его терраформировать). Кроме того, ученые считают, что эта атмосфера богата органической химией — то есть похожа на атмосферу ранней Земли (только значительно холоднее).

Титан

Структура Титана

Таким образом, превращение ее в нечто землеподобное вполне реально. Сначала повысим температуру поверхности. Поскольку Титан очень далек от Солнца и уже богат парниковыми газами, сделать это можно будет только с помощью орбитальных зеркал. Льды на поверхности сублимируют, выпустят подземный аммиак, что приведет к еще большему нагреву.

Следующим шагом будет преобразование атмосферы в нечто пригодное для дыхания. Как уже отмечалось, атмосфера Титана богата азотом, что устраняет необходимость ввода буферных газов. А с доступностью воды кислород можно будет ввести через электролиз. В то же время придется поглотить метан и другие углеводороды, чтобы не дать им смешаться с кислородом во взрывоопасную смесь.

Энцелад

Энцелад: структура

Но учитывая плотную и многослойную природу льда Титана, на который приходится половина массы тела, спутник будет больше похож на планету-океан — без континентов, суши, на которой можно строить. Так что, опять же, любая жизнь разместится на плавучих платформах или на крупных кораблях.

Энцелад. Благодаря недавнему обнаружению подземных океанов на этом спутнике, он представляет собой вполне перспективный вариант. Анализ извержений в южном полярном регионе космическим зондом «Кассини» также показал присутствие органических молекул. Таким образом, терраформирование Энцелада будет похоже на терраформирование Европы и образует похожую луну-океан.

Опять же, вероятно, придется включать орбитальные зеркала, учитывая расстояние Энцелада от нашего Солнца. После того как лед начнет сублимировать, электролиз будет вырабатывать газообразный кислород. Будет выпущен аммиак в подповерхностном океане, который поможет поднять температуру и послужит источником азота.

Экзопланеты

Хорошо. Забыли про Солнечную систему. Внесолнечные планеты (экзопланеты) тоже являются потенциальными местами для терраформирования. Из 1941 подтвержденной обнаруженной экзопланеты на текущий момент, среди них были обнаружены и планеты земного типа. Это землеподобные планеты, обладающие атмосферой и, как и Земля, располагающиеся в области возле звезды, в которой средняя температура поверхности позволяет существовать жидкой воде (та самая потенциально обитаемая зона — зона Златовласки).

Экзопланеты

Первая такая планета, подтвержденная «Кеплером», которая располагается в потенциально обитаемой зоне звезды, это Kepler-22b. Планета находится в 600 световых годах от Земли в созвездии Лебедя, впервые ее наблюдали 12 мая 2009 года, а после подтвердили 5 декабря 2011 года. Основываясь на всех полученных данных, ученые считают, что этот мир в 2,4 раза больше Земли, а также, вероятно, покрыт океанами и имеет жидкую или газообразную внешнюю оболочку.

Кроме того, существуют звездные системы с несколькими планетами «земного типа» в зоне Златовласки. К примеру, Gliese 581 — красная карликовая звезда, расположенная в 20,22 светового года от Земли в созвездии Весов. В этой системе подтверждено существование трех планет и предполагается наличие еще двух, две из которых должны быть в обитаемой зоне. Это планета Gliese 581 d и возможная Gliese 581 g.

Тау Кита — другой пример. Это звезда G-класса, расположенная в 12 световых годах от Земли, в созвездии Кита, рядом с которой предполагается наличие пяти планет. Две из них — суперземли, которые должны быть в потенциально обитаемой зоне звезды, Tau Ceti e и Tau Ceti f. Но Tau Ceti e может быть слишком близко к звезде, поэтому на ее поверхности могут быть условия Венеры.

Человеческая моча может стать удобрением для марсианских растений

Во всех случаях терраформирование атмосфер этих планет будет, вероятнее всего, включать те же методы, что и терраформирование Венеры и Марса, в той или иной степени. Для тех планет, что расположены на внешней границе своих обитаемых зон, терраформирование может быть проведено за счет введения парниковых газов или покрытия поверхности материалом с низким альбедо, чтобы вызвать глобальное потепление. Для планет поближе понадобятся тени и методы поглощения углерода, которые понизят температуры до той точки, когда планета перестанет быть недружелюбной.

Возможные выгоды терраформирования

Решая вопрос терраформирования, мы неизбежно приходим к другому вопросу: зачем нам это делать? Учитывая расходы на ресурсы, временные затраты и другие проблемы, которые возникают естественным образом, какие причины должны поощрять нас заниматься терраформированием? Как мы упоминали ранее, эти причины уже озвучил Маск: в первую очередь, это «резервное копирование», которое позволит спасти человечество от катаклизма.

NASA

Если убрать в сторону перспективу ядерной катастрофы, есть также вероятность того, что жизнь в определенных частях нашей планеты станет невозможной лет через сто. Как сообщила NOAA в марте 2015 года, уровень углекислого газа в атмосфере в настоящее время превысил 400 частей на миллион (ppm) — такого уровня мир не видел со времени плиоцена, когда глобальная температура и уровень моря были значительно выше.

Если убрать в сторону перспективу ядерной катастрофы, есть также вероятность того, что жизнь в определенных частях нашей планеты станет невозможной лет через сто. Как сообщила NOAA в марте 2015 года, уровень углекислого газа в атмосфере в настоящее время превысил 400 частей на миллион (ppm) — такого уровня мир не видел со времени плиоцена, когда глобальная температура и уровень моря были значительно выше.

В ряде сценариев, рассчитанных NASA, эта тенденция сохранится до 2100 года и вызовет серьезные последствия. В одном сценарии выбросы двуокиси углерода будут стремиться к 550 ppm к концу века, что вызовет рост температуры на 2,5 градуса. Во втором сценарии выбросы диоксида углерода вырастут до 800 ppm, а температура — на 4,5 градуса. Во втором случае жизнь станет невозможной во многих частях нашей планеты.

Очевидно, может оказаться необходимым создание долгосрочного дома для человечества на Марсе, Луне, Венере или где-то еще в Солнечной системе. Помимо поиска мест для разработки ресурсов, культивации пищи и спасения нас от перенаселения, колонии на других мирах могут играть важную роль для долгосрочного выживания человечества как вида.

Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.

Есть также мнение, что человечество уже хорошо разбирается в изменении планетарной среды. На протяжении многих веков зависимость человечества от промышленного оборудования, угля и ископаемого топлива оказала вполне ощутимый эффект на Землю. И если парниковый эффект мы вызвали совершенно непреднамеренно, наш опыт и знания о его создании на Земле могут сослужить хорошую службу на планетах, на которых придется искусственным путем поднимать температуру поверхности.

MCT

Кроме того, работа со средой, в которой присутствует нарастающий парниковый эффект — с Венерой например, — может углубить наши знания о том, как бороться с ним на Земле. Будь то использование экстремальных бактерий, ввод новых газов или минеральных элементов для поглощения углерода, проверка этих методов на Венере может помочь нам в битве с изменением климата дома.

Кроме того, работа со средой, в которой присутствует нарастающий парниковый эффект — с Венерой например, — может углубить наши знания о том, как бороться с ним на Земле. Будь то использование экстремальных бактерий, ввод новых газов или минеральных элементов для поглощения углерода, проверка этих методов на Венере может помочь нам в битве с изменением климата дома.

Кроме того, схожесть Марса с Землей — хорошая причина для его терраформирования. Когда-то Марс в сущности напоминал Землю, пока его атмосферу не унесло прочь и он не потерял практически всю жидкую воду на поверхности. Чтобы вернуть его былую влажную и теплую славу, потребуется приложить титанические усилия. То же самое можно сказать про Венеру, если мы попытаемся обернуть ее нарастающий парниковый эффект вспять и вернуть ее во времена, когда она была (а может, и не была) похожей на Землю.

Curiosity зафиксировал рост концентрации кислорода на Марсе

Есть также мнение, что колонизация Солнечной системы может привести к эпохе «постдефицита». Если человечество построит базы на астероидах и других мирах, начнет разрабатывать пояс астероида и добывать ресурсы во внешней Солнечной системе, мы получим достаточно минералов, газов, энергии и воды, чтобы их хватило надолго. Они также могут вызвать существенное ускорение развития человечества; обеспечат нам скачки и прорывы в технологическом и социальном прогрессе.

Возможные проблемы терраформирования

И вот, когда мы почти все разобрали — где, что, кого, — появляется список проблем, каждая из которых может нам помешать:

  • Это невозможно с нынешними технологиями
  • Потребуется существенное вложение ресурсов
  • Мы решаем одну проблему, чтобы создать другую
  • Инвестиции будут долго окупаться, если вообще окупятся
  • Понадобится очень, ОЧЕНЬ много времени

Видите ли, все возможные идеи терраформирования Венеры и Марса включают инфраструктуру, которой пока не существует и которую будет очень дорого создать. Например, концепция орбитальной тени, которая могла бы охладить Венеру, требует строительства структуры в четыре диаметра самой Венеры (если расположить ее в точке Лагранжа L1). Это мегатонны материала, которые придется собирать на месте.

В противоположность этому, увеличение скорости вращения Венеры потребует на много порядков больше энергии, чем строительство солнечных зеркал на орбите. Как и с удалением атмосферы Венеры, этот процесс потребует значительное число ударов комет, которые придется тащить из внешней Солнечной системы — в основном из пояса Койпера.

Астероид

Для этого потребуется большой флот космических кораблей, которые будут перевозить эти ударные тела, и эти корабли придется оснастить передовыми двигателями, чтобы путешествие не занимало вечность. В настоящее время не существует двигательных систем такого класса, а современные методы — от ионных двигателей до химических ракет — не являются ни быстрыми, ни экономически целесообразными.

Для этого потребуется большой флот космических кораблей, которые будут перевозить эти ударные тела, и эти корабли придется оснастить передовыми двигателями, чтобы путешествие не занимало вечность. В настоящее время не существует двигательных систем такого класса, а современные методы — от ионных двигателей до химических ракет — не являются ни быстрыми, ни экономически целесообразными.

Для иллюстрации: миссии «Новые горизонты» NASA потребовалось более 11 лет, чтобы осуществить исторически важное путешествие к Плутону в поясе Койпера, используя обычные ракеты и гравитационный маневр. В то же время миссия Dawn, которая полагалась на ионное движение, за четыре года достигла Весты в поясе астероидов. Ни один из этих методов не подойдет для многоразовых поездок в поясе Койпера ради добычи ледяных комет и астероидов, а до нужных кораблей нам еще далеко.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Близость Луны делает ее привлекательным вариантом для терраформирования. Но опять же, необходимые ресурсы — среди которых будет пара сотен комет — придется импортировать из внешней Солнечной системы. И если ресурсы для паратерраформирования Меркурия можно добыть на месте или принести с Земли, для этого все равно потребуется флот кораблей и роботов-строителей, которых мы пока не знаем.

У внешней Солнечной системы похожие проблемы. Чтобы начать терраформировать эти луны, нам нужна инфраструктура между нами и ними, а именно базы на Луне, на Марсе и в поясе астероидов. На них мы сможем заправлять корабли по мере транспортировки материалов в системы Юпитера и Сатурна, а также добывать ресурсы.

Очевидно, на нашей планете появится и умрет много поколений, прежде чем все это будет построено. Отсюда можно сделать вывод, что любые попытки терраформировать внешнюю Солнечную систему следует предпринимать после эффективной колонизации внутренней Солнечной системы. И терраформирование внутренней Солнечной системы не станет возможно, пока человечество не обзаведется множеством космических тягачей, которые будут отличаться завидной, ко всему прочему, скоростью.

Марс

Необходимость радиационных щитов также представляет собой проблему. Размер и стоимость изготовления щитов, которые могли бы отразить магнитное поле Юпитера, будут астрономическими. И в то время как ресурсы можно добыть на близлежащем поясе астероидов, их транспортировка и сборка в космосе возле спутников, опять же, потребует множества кораблей и роботов-рабочих. И опять же, потребуется обширная инфраструктура между Землей и Юпитером, чтобы все это работало.

Необходимость радиационных щитов также представляет собой проблему. Размер и стоимость изготовления щитов, которые могли бы отразить магнитное поле Юпитера, будут астрономическими. И в то время как ресурсы можно добыть на близлежащем поясе астероидов, их транспортировка и сборка в космосе возле спутников, опять же, потребует множества кораблей и роботов-рабочих. И опять же, потребуется обширная инфраструктура между Землей и Юпитером, чтобы все это работало.

Кстати, о проблемах. Которые могут возникнуть в процессе терраформирования. Возможно, преобразование спутников Юпитера и Сатурна в миры-океаны может быть бессмысленным, поскольку объем жидкой воды будет занимать крупную долю общего радиуса луны. В сочетании с низкой гравитацией у поверхности, высокими орбитальными скоростями и приливными эффектами родительских планет, жидкая вода родит относительно высокие волны на поверхности. Спутники могут стать совершенно нестабильными после терраформирования.

Есть также ряд вопросов об этике терраформирования. Обычно вопрос изменения одних планет, чтобы сделать их более пригодными для человека, рождает другой вопрос, вполне естественный: что будет со всеми формами жизни, которые уже живут там? Если Марс и другие тела Солнечной системы обладают коренной микробиологической (или более сложной) жизнью, о чем думают многие ученые, изменение их экологии может повлиять или даже уничтожить эти жизнеформы. Будущие колонисты и планетарные инженеры будут творить геноцид.

Еще один аргумент против терраформирования заключается в том, что любые попытки изменить экологию другой планеты не представляют каких-либо немедленных выгод. Учитывая связанные с ним затраты, каким должен быть стимул, чтобы потратить столько времени, ресурсов и энергии на такой проект? Хотя идея использования ресурсов Солнечной системы имеет смысл в долгосрочной перспективе, краткосрочные выгоды гораздо менее очевидны и ощутимы.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Не будем забывать, что добытые на других мирах ресурсы не имеют экономической ценности, когда вы можете добывать их дома гораздо дешевле. Недвижимость может быть основой экономической модели, только если эта недвижимость кому-то нужна. Проект Mars One показал нам, что хотя уже есть довольно много людей, готовых отправиться в один конец на Марс и превратить Красную планету в дивный, новый мир, землю которого впоследствии люди будут хотеть приобрести, эта инициатива сперва потребует серьезных достижений в технологиях, терраформирования или всего сразу.

Марс

Несложно заметить, что Марс, Венера, Луна и все другое в Солнечной системы попытается убить известную нам жизнь при первой возможности. Даже вооружившись необходимыми инструментами и ресурсами, люди, пожелавшие стать «первой волной» колонизаторов других планет, столкнутся с серьезными препятствиями. И так будет сотни или тысячи лет. Нравится вам это или нет, терраформирование — это медленная, тяжелая работа, адский, черный труд.

Несложно заметить, что Марс, Венера, Луна и все другое в Солнечной системы попытается убить известную нам жизнь при первой возможности. Даже вооружившись необходимыми инструментами и ресурсами, люди, пожелавшие стать «первой волной» колонизаторов других планет, столкнутся с серьезными препятствиями. И так будет сотни или тысячи лет. Нравится вам это или нет, терраформирование — это медленная, тяжелая работа, адский, черный труд.

Космический корабль Starship для полетов на Марс попытается оторваться от Земли

Терра инкогнита

Итак… рассмотрев все места, которые могут колонизировать и терраформировать люди, мы приходим к логичному вопросу: что должно подтолкнуть нас к этому? Зачем нам это делать? Если предположить, что на кону не наше выживание, какие возможные стимулы будут у человечества, чтобы стать межпланетным (или межзвездным) видом?

Возможно, никаких. Подобно тому, как астронавтов посылают на Луну, люди отправляются в небо и взбираются на самые высокие горы Земли, колонизация других планет может стать просто чем-то, что мы можем, что хотим сделать. Почему? Потому что мы можем. Когда-то в прошлом эта причина была достаточно веской и, вероятно, снова станет таковой в не слишком отдаленном будущем.

Это не должно никоим образом удерживать нас от рассмотрения этических последствий, стоимости мероприятия или соотношения цены с качеством. Но со временем мы могли бы обнаружить, что у нас просто нет выбора. Земля становится слишком многолюдной.

Новый комментарий

Для отправки комментария вы должны или